Evolving Algebras

J.M.W. Visser

August 6, 1996

Delft University of Technology
Faculty of Technical Mathematics and Informatics
Department of Technical Informatics

Master’s Thesis

Afstudeergegevens

Spreker:
Titel:
Datum:
Tijd:

Plaats:
Afstudeercie:

Samenvatting:

J.M.W. Visser

Evolving algebras

Dinsdag 20 augustus 1996

14:00

Zaal OO, Faculteit Wiskunde en Informatica

Prof. Dr. Ir. F.W. Jansen

Drs. R. D. Huijsman

Dr. Ir. R. Sommerhalder

Ir. J.F.M. Tonino

Evolving algebras provide models for arbitrary computational pro-
cesses, that can at once be viewed as abstract machines, and as
formal specifications. Thus, the evolving algebra formalism com-
bines two perspectives on computational processes: specification
methods and computational models. Two contributions have been
made to the evolving algebra research programme. Firstly, a de-
tailed proposal has been formulated to introduce modules into the
evolving algebra formalism. These modules enable structured e-
volving algebra design, and make new kinds of parallelism available
in the theory. Secondly, a tool, called EVADE, has been created for
automated support of evolving algebras. This tool comprises both
a compiler and a run analyzer. EVADE has been implemented in the
functional language Gofer. In the implementation, ample use has
been made of a novel programming method, which involves monads.

Contents

I

1

The theory of evolving algebras

Introduction to evolving algebras

1.2 An example evolving algebra
1.3 Characteristics and features of evolving algebras

The core theory of evolving algebras

2.1 Introduction
2.2 Runs and the transition graph o000
2.3 Identifiers and expressions
2.4 States
2.5 Theprogram
2.6 Transitions
2.7 Consistency

Modularization of evolving algebras

3.1 The purpose of modularization
3.2 Preparatory adaptations of the theory
3.3 Modules as parameterized abstractions 0L
3.4 Evolving algebra modules as parameterized abstractions
3.5 Functional modules
3.6 Procedural modules
3.7 Modules and consistency
3.8 Modularized evolving algebras in the literature
3.9 Modules and parallelism
3.10 Modules and structured evolving algebra design

A modular evolving algebra for lambda reduction

4.1 TLambdareduction
4.2 Graph representation of lambda expressions
4.3 Modular structure of the evolving algebra
4.4 Toplevel module
4.5 Module for finding theredex 0oL
4.6 Module for reducing theredex oo
4.7 Module for constructing the reduct o000

10
10
12
15

18
18
20
21
24
26
27
30

35
36
36
37
42
44
46
51
52
53
57

Contents

II Automated support for evolving algebras

5

10

Inventory of evolving algebra support

5.1
5.2
5.3
5.4

Evolving algebra compilers L.
Evolving algebra run analyzers
Interactive theorem provers
Evolving algebra transformers

EVADE: an evolving algebra tool

6.1
6.2
6.3
6.4

Overview
Example
Advanced features Lo
Summary

Comparison of EvADE with other tools

7.1
7.2
7.3

Comparison with respect to the evolving algebras that are accepted.
Comparison of tools within their categories
General evaluationo

The programming language Gofer

8.1
8.2
8.3
8.4

Functions and function definitions
Expressions
Types and type definitions
Type classes, overloading and polymorphism restriction

Programming with monads

9.1
9.2
9.3
9.4
9.5
9.6

Monads
Monad extensions
Monad transformers
Monad transformers and extensions
Monadic parsers e

Monadic I/O

EVADE: monadic implementation in Gofer

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Decomposition of EVADE
The monads for the various components
The exception mechanism of EVADE
Implementation of the low level components
Implementation of the intermediate level components
Implementation of the top level components
Extendability of EVADE

Monad Proofs

Al
A2
A3

Proofs of the monad laws
Proofs of the monad extension laws
Proofs of the monad transformer laws

Evolving algebra specifications

73

76
76
77
77
78

79
79
81
86
90

92
93
96
98

99
100
101
102
104

109
110
116
121
129
133
138

144
145
148
150
151
161
166
169

171
171
174
177

181

Introduction

Evolving algebras provide models for arbitrary computational processes. They can
at once be viewed as abstract machines, and as formal specifications. Thus, the
evolving algebra formalism combines two perspectives on computational processes:
specification methods and computational models.

Since evolving algebras were first proposed by Yuri Gurevich [Gur91][Gur95], they
have been the subject of ongoing research. The graduation project, the results of
which are presented in this thesis report, aimed to make a dual contribution to this
research. On the one hand, an attempt has been made to advance the development of
the theory of evolving algebras. On the other hand, a fool has been created to support
the design and use of particular evolving algebras. These theoretical and more applied
efforts have been undertaken conjointly.

The dual focus of the project 1s reflected in the structure of this thesis report,
which consists of two parts. The first part is concerned with the theory of evolving
algebras, while the second part is dedicated to the subject of automated support for
evolving algebras.

The first part starts with a chapter which presents an informal introduction to
evolving algebras. By briefly describing the various elements of evolving algebras, this
introduction answers the question what evolving algebras are. As illustrate to answer,
an example evolving algebra is presented and explained in detail. An enumeration of
the characteristics and distinctive features of evolving algebras concludes the informal
introduction.

Chapter 2 presents a more formal exposition of the theory of evolving algebras.
All notions constitutive of the theory are explained and defined in turn. This theory
is called the core theory of evolving algebras, to contrast with the theory of modular
evolving algebras which is developed in the next chapter.

Chapter 3 opens with a reflection on the purpose of modularization of evolving
algebras. The introduction of modules into the theory enables structured design of
evolving algebras, and incorporates new kinds of parallelism into the formalism. The
development of the modularized theory takes programming language theory as its
point of departure, which views modules as parameterized abstractions. This view is
applied to evolving algebras and subsequenly elaborated, which leads to the design of
two kinds of evolving algebra modules: functional modules and procedural modules.
Examples of modularized evolving algebras using modules of these kinds, are present-
ed. Chapter 3 concludes by investigating the benefits of functional and procedural
modules with respect to parallelism and structured evolving algebra design.

Chapter 4, the final chapter of part I, contains an elaborate example of a modular
evolving algebra. The evolving algebra in question specifies an algorithm for graph
reduction of lambda expressions.

The second part of this report is dedicated to automated support for evolving

algebras. In particular, it is concerned with the evolving algebra tool EvADE, which
was developed by the author in the course of his graduation project. Two groups of
three chapters can be distinguished within part II.

Chapters 5, 6 and 7 assume the standpoint of a user towards EVADE and other
tools for automated support. In chapter 5, an inventory is made of conceivable and
actually existing evolving algebra tools. These tools are classified into four categories,
which are discussed in turn. Chapter 6 contains an exhaustive description of the
functionality of EvADE. Both basic and advanced features of the tool are illustrated
with examples. As a consequence, this chapter can serve as a tutorial for users of
the program. A command summary is supplied for quick reference. In chapter 7,
the EVADE is evaluated with respect to other existing tools that are to some extent
comparable. The comparison is made both with respect to the evolving algebras
accepted by the tools, and with respect to the functionality offered by them.

In the second group of three chapters of part II, the standpoint of the user is a-
bandoned. In these chapters, an exposition is given of EVADE’s implementation. The
tool is implemented in the functional language Gofer, which is briefly explained in
chapter 8. A unique feature of Gofer is its extended type system, which uses con-
structor classes to support several varieties of polymorphism. In the implementation
of EVADE, ample use is made of a novel programming method, which involves mon-
ads. The monadic programming method is presented and explained in chapter 9.
The presentation also contains elaborations of this method, which were developed in
the course of implementing EvADE. Apart from monads, the monadic programming
method involves monad extensions and monad transformers. Two generic applica-
tions of the monadic programming method are presented as well: monadic parsing
and monadic I/O. The chapters on Gofer and monadic programming are preliminary
to chapter 10, which discusses the implementation of EvADE itself. This last chapter
describes a multi-level decomposition of the program. Before the constitutive compo-
nents of each level are scrutinized, use of monads and the exception mechanism are
explained. Finally, the implementation of EVADE is evaluated, and future extensions
of the program are anticipated.

Introduction

Part 1

The theory of evolving
algebras

The first part of this report is concerned with the theory of evolving algebras. In
chapters 1 and 2, a concise informal account and a more elaborate formal treatment
are given of the core theory of evolving algebras. In chapter 3, an extension of the core
theory is proposed. This extension consists in the introduction of modules into the
theory. These modules enable structured design of evolving algebras, and incorporate
new kinds of parallelism into the theory. In chapter 4, the modularized theory of
evolving algebras is demonstrated by an example. The example is a modular evolving
algebra which specifies an algorithm for graph reduction of lambda expressions.

Chapter 1

Introduction to evolving
algebras

1.1 What are evolving algebras? 10
1.2 An example evolving algebra o0 0oL 12
1.3 Characteristics and features of evolving algebras 15
1.3.1 Characterization of evolving algebras 15
1.3.2 Distinctive features of evolving algebras 16

Evolving algebras provide models of arbitrary computational processes, and can be
viewed both as abstract machines and as specifications. Hence, the evolving alge-
bra formalism combines two perspectives on computational processes: specification
methods and computational models.

This chapter presents an informal introduction to evolving algebras. Section 1.1
gives a rough characterization of evolving algebras, which answers the question what
evolving algebras are. This answer is illustrated by an elaborated example in section
1.2. Section 1.3 briefly recapitulates the characterization of evolving algebras, and
lists some distinctive features of the evolving algebra formalism.

1.1 What are evolving algebras?

What are evolving algebras? As a first approximation of the answer to this question
we can give the following characterization: An evolving algebra is a state transition
system.

S, S, . Sy

10

1.1. What are evolving algebras? 11

Starting from an initial state Sy, a number of states are entered successively, either
until a final state is reached, or indefinitely. This rough characterization of evolving
algebras immediately gives rise to two questions:

e What are the states of an evolving algebra?
e How are transitions from one state to another brought about?

We will answer these questions in turn.

What are the states of an evolving algebra?

The individual states of evolving algebras are interpreted vocabularies. A vocabulary
is a collection of names. To interpret a vocabulary means to assign a value to each
of the names it contains. (The value assigned to a name is also called its meaning or
its interpretation.) For every state of a single evolving algebra the vocabulary is the
same. This allows us to speak of the vocabulary of an evolving algebra.

The interpreted vocabularies which form the states of evolving algebras are known
in mathematics as (many-sorted) algebras, or structures.

How are transitions from one state to another brought about?

The state transitions in an evolving algebra take place on the basis of a program. An
evolving algebra program is a list of transition rules of the following form:

Program:
if (condition)
then (update)

(update)

if (condition)
then (update)

(update)

The condition in the if-clause of a transition rule is called its guard. The updates in
the then-clause together form its update set.

To get from one state to another, the first thing to be done is to determine which
of the transition rules in the program are applicable, i.e. which rules are guarded by
a condition that is true in the current state S;. Secondly, by non-deterministic choice
a single rule is elected from among the applicable rules. Finally, the updates in the
update set of this elected rule are fired in parallel at the current state to produce the
new state S;y1.

When this procedure is carried out on the initial state Sy and subsequently on
each new state, a chain of transitions is created.

From the brief description of evolving algebras just given, one can already glean what
ingredients are needed to define an evolving algebra. These ingredients are the follow-
ing:

12 Chapter 1. Introduction to evolving algebras

e A vocabulary or, more generally, a signature.
e A description of the initial state Sp.
e A program.

The vocabulary lists the names of the evolving algebra. Since each of these names is
intended to name values of a particular type only, the description of a vocabulary can
also include type information. Further, distinctions can be made between names of sets
and names of functions, and between names whose interpretation can change during
transitions, and names whose interpretation is invariant. A vocabulary augmented
with type information and information about these distinctions is called a signature.

The description of the initial state of an evolving algebra can take several forms.
The most straightforward form of initial state description is a mapping of names to
values. Alternatively, one can describe an initial state by supplying a mapping to
values for only a portion of names. This mapping is then supplemented by a start
update set which assigns values to the remaining names by performing updates.

The program of an evolving algebra definition lists the transition rules of the
evolving algebra.

The information that is declared explicitly in the vocabulary or signature, is also
implicitly present in the program and the initial state description. As a consequence,
the vocabulary or signature of the evolving algebra definition can be suppressed. How-
ever, we prefer to make all three defining elements explicit.

1.2 An example evolving algebra

As an illustration to the brief description of evolving algebras given in the previous sec-
tion, we will now consider an example evolving algebra. Our example evolving algebra
specifies an algorithm for creating a linked list of length n, which holds the successive

factorials 0!...n!. We will first consider the start update set and the program:
Start:
1:=0
new e : List Elem with
head(e) :=1
root := e
last .= e
Program:
ifi<n
theni:=i+1

new ¢ : List Flem with
head(e) := head(last) * (i + 1)
last .= e
tail(last) == e

In the start update set the counter 7 is initialized to 0, and the first element of the
linked list is created. The “pointers” root and last are initialized to point to this first
element. The value 1 is assigned to the head of the new element, thus filling in the
first position in the linked list.

1.2. An example evolving algebra 13

0 root €0 head 1

_

Figure 1.1: Example EA: Initial state.

last

The program of this example consists of a single transition rule only. The guard
of this rule tests whether the counter 7 has reached its final value n yet. If not, the
update set of the transition rule will be fired. The updates in this set increment the
counter ¢, and create a new element of the linked list. The pointers tail(last) and last
are updated to point to this new element. Also, a pointer head is established from
the new element to the new factorial value. Remember that all of these updates are
performed in parallel, nested updates as well as the others. If they had been written
down in another order, their effect would not have been any different. For instance,
the argument for which the tail pointer is locally updated is the old value of last, not
the new one.

This example demonstrates two forms of updates that can appear in evolving
algebras.

e Updates of the form a := b are called local function updates.

e Updates of the form new a : D with updates are called new-updates or exten-
ston updates.

Local function updates are similar to assignments in imperative programming lan-
guages. Only the former are more general than the latter, because they allow as-
signment to function names, not only to variables. New-updates perform a kind of
allocation. They introduce a new element and contain nested updates in which the
new element can be referred to by a new, local name. Apart from these two forms of
update that appear in our example, there is one more form: the remove-update. For
the moment, this third form of update, which performs a sort of deallocation, will be
left out of consideration.

We will now trace the execution of our example evolving algebra. Imagine the
value of n to be 3. Firing the start update-set produces the following initial state!:

1 = 0
root = &g
last = ¢

head = ¢leg— 1]

The triple arrow in n = v indicates that the name n has the value v. The subscripted
epsilon £; denotes an anonymous element of the domain ListFlem. The function
¢ denotes a partial function that is undefined over its entire domain. The notation
fla — v] refers to the function which is equal to f except in the argument a, for which
its value is v. A graphical depiction of this state is given in figure 1.1.

This state is obtained by performing in parallel the updates in the start update
set. The first updates initializes ¢ to 0. The second update introduces a new element
€0, assigns in parallel this element to root and last and locally (at the argument eg)
initializes the function head to 1.

Next, the program of the evolving algebra is executed. Starting from the initial
state Sy, we will first enter the state Sy (see figure 1.2):

1 Actually, only the part of the state is shown, which can be subject to change.

14 Chapter 1. Introduction to evolving algebras

;] —— 1 root €0 head 1
tail
last €1 head 1

Figure 1.2: Example EA: state after first transition.

. —— 3 root €0 head 1
tal

¢, _ head | 1
tail

e, __head 9
tail

last €3 head 6

Figure 1.3: Example EA: final state.

1 = 1
root = £
last = &
head 3 (]5[60 — 1,61 — 1]

tail = (]5[60 — 61]

This state is obtained by application of the only transition rule in the program, i.e.
by performing this rule’s updates in parallel. The first of these updates increments
the value of i to 1. The second update introduces a new element. The first of the
nested updates of the second update uses the old value of 7 to calculate the value it
assigns locally to head. The second nested update redirects the last pointer to the
new element. The third nested update establishes a tail pointer from the former last
element to the new element.

Repetitive execution of the program will bring us through a third state S; to the
fourth and final state of the evolving algebra S3 (see figure 1.3):

1 = 3
rootl = &g
last = &3

head = @leor 1,61 — 1,9 — 2 g5+ 6]
tail = ¢leg — €1,61 > €2,69 — €3]

This third state is the final state, because the guard ¢ < n of the only transition rule
of the program is false in this state (remember that we chose n = 3). Hence there are
no applicable rules in this state. Thus, it is a final state.

Above, we have only given the program of our example evolving algebra, and its
start update set. Hence, we still need to provide two things to complete the definition
of the evolving algebra. Firstly, we need to provide a vocabulary or signature. The
information in this signature — what names the vocabulary contains, and what types

1.3. Characteristics and features of evolving algebras 15

these names have — is already implicitly present in the program. Secondly, we need
to supplement the start update set with a mapping of names to values to make the
description of the initial state complete. The signature and the mapping can be
presented in combination as follows:

Signature:

static sorts
N = N
dynamic sorts
ListElem
static functions
n:N = 3:N (bijvoorbeeld)
+: NxN—-N = +:NxN-=N
* : NxN—-=N = - :NxN-—=N
dynamic functions
1: N
head : ListElem — N
tail : ListElem — ListElem
root : ListElem
last : ListFElem

The signature groups the names of the vocabulary into four categories:

e Static sort names. In the example, N is a static sort name. It is invariantly
interpreted as the mathematical set of natural numbers N.

e Dynamic sort names. List Flem is a dynamic sort name. Initially, List Elem 1s
interpreted as an empty set. The new-updates in the start update set and the
program enlarge this set with one element in each transition.

e Static function names. The names n, + and * are static function names. The
first one names a O-ary function (constant), the other two name binary func-
tions. They are invariantly interpreted as the number three, addition of natural
numbers and multiplication of natural numbers, respectively.

e Dynamic function names. The names i, head, tail and root are dynamic func-
tion names. They are initially interpreted as Undef and the function ¢, which is
undefined over its entire domain. Their interpretation changes during the evo-
lution of the evolving algebra under influence of the various updates. Note that
dynamic functions are not necessarily of dynamic sort.

The values of static sort and names are given by a mapping of names to values. The
values of dynamic sorts and functions are established by the start update set, before
which they are assumed to be empty sets and completely undefined partial functions,
respectively.

1.3 Characteristics and features of evolving algebras

1.3.1 Characterization of evolving algebras

At the top of section 1.1 we gave a rough characterization of evolving algebras by
stating that evolving algebras are state transition systems. The ensuing account of

16 Chapter 1. Introduction to evolving algebras

what the states of evolving algebras are, how state transitions are brought about, and
what ingredients are needed to define an evolving algebra, served to add detail to this
rough characterization. The example given in section 1.2 illustrated these matters
further, and showed what kinds of update are possible on evolving algebra states. We
can summarize these matters in four points:

e Evolving algebras are state transition systems.

e The states of evolving algebras are interpreted vocabularies. The names in these
vocabularies can be of different types, and fall into four different categories. The
values to which the names are interpreted are mathematical sets and functions.

e The control-flow of an evolving algebra consists of (1) a single loop of repetitive
execution of the program, and (2) conditions guarding the transition rules in
the program. Since several guarding conditions can be true simultaneously, the
control flow of an evolving algebra is possibly non-deterministic.

e There are three kinds of updates: local function updates, new-updates and
remove-updates. These kinds of updates perform general assignment, alloca-
tion and deallocation, respectively. The updates in a (nested) update set are
performed in parallel.

These four points constitute an informal description of the evolving algebra formalism.
In chapter 2 a more formal and elaborate account will be given.

1.3.2 Distinctive features of evolving algebras

As has been explained in the foregoing sections, the states of evolving algebras are
interpreted vocabularies. The values to which the names in these vocabularies are
interpreted can be arbitrary mathematical functions and sets. As a consequence, the
evolving algebra formalism puts the entire mathematical realm at the disposal of the
evolving algebra designer. This is a source of some agreeable features of evolving
algebras.

Variable level of abstraction In the evolving algebra formalism, there is no fixed
collection of basic building blocks with which the evolving algebras designer must make
do. In stead, one can import any mathematical function or set that suits one’s needs.
As a consequence, the level of abstraction of evolving algebras is variable, and can be
adjusted to suit the abstraction level of the computational process to be modelled. No
encoding of the process and its data is needed.

Low methodological overhead To start using evolving algebras, one does not
need to be initiated to a completely new language. A minimal mathematical back-
ground is assumed, to which a small collection of new language constructs is added.
These new language constructs are imperative in style, which makes them readily ac-
cessible. As a consequence, the evolving algebra formalism is easy to learn, to use,
and to understand.

Universality According to Gurevich’ evolving algebra thesis, any kind of computa-
tional process can be modelled with evolving algebras. In principle, there is no limit
on their applicability. They are at least as powerful as Turing machines.

1.3. Characteristics and features of evolving algebras 17

Executability When the import of sets and functions into evolving algebras is re-
stricted to computable ones, evolving algebras can be executed. Hence, they can be
used as a programming language as well as a specification language. In fact, the evolv-
ing algebra formalism constitutes a programming language that combines the formal
rigor of functional languages with the perspicuity of imperative languages.

Thus, evolving algebras offer simplicity and modelling power at any desired level of
abstraction.

Chapter 2

The core theory of evolving
algebras

2.1 Introduction L Lo L 18
2.1.1 Methodological remarks 18
2.1.2 Structure of the theory 19
2.1.3 Structure of the chapter 20

2.2 Runs and the transition grapho 20

2.3 Identifiers and expressions 21
2.3.1 Identifiers Lo 21
2.3.2 Expressions e 22

2.4 States 24

2.5 The program Lo 26

2.6 Transitions L Lo L 27
2.6.1 Applicability of rules 28
2.6.2 Effects of updates, 28

2.7 Consistency e 30
2.7.1 Purpose of a notion of consistency 30
2.7.2 Sources of inconsistency, 31
2.7.3 Definition of consistency 33

2.1 Introduction

2.1.1 Methodological remarks

In the foregoing chapter, an informal description was given of evolving algebras. In
this chapter, we will give a formal exposition of the core theory of evolving algebras.
This account is based on two introductory articles written by Yuri Gurevich Evolv-
ing Algebras: A Tutorial Introduction [Gur91] and Evolving Algebras 1993: Lipari

18

2.1. Introduction 19

run

transition graph

transition

Figure 2.1: Definitional structure of the theory of evolving algebras.

Guide [Gur95]. Also, the section on evolving algebras in the article A Mathemati-
cal Definition of Full Prolog [BR94, §1] by Egon Borger and Dean Rosenzweig has
been consulted. The main source, however, is Hans Tonino’s report by the title A
formalization of many-sorted evolving algebras [Ton93].

The several treatments of evolving algebras in these four sources diverge in a num-
ber of respects. In the first place, there is a divergence in terminology. For some
concepts different names are employed, and some names are employed for different
concepts. The terminology of the present paper has been assembled as much in accor-
dance with the sources as possible, while aiming for maximal clarity and orthogonality.

Secondly, the sources diverge in the amount of symbolism and the degree of for-
mal rigor. Tonino’s treatment of evolving algebra is a full formalization, involving a
large amount of symbolism and a substantial number of formal definitions and formal
theorems. In this introductory chapter, we will try to give a formal presentation of
evolving algebras in natural language; symbolism will not be used complementary,
but only supplementary to natural language. To guide the reader through this formal
presentation informal speech will not be eschewed.

Thirdly, Gurevich’ articles deal exclusively with one-sorted evolving algebras, while
Tonino’s report is dedicated to many-sorted evolving algebras. The Borger-Rosenzweig
article, finally, is ambivalent between a one-sorted and a many-sorted approach, due
to the informal treatment of its notion of universes. In this chapter, we will give an
account of many-sorted evolving algebras, for this is the more general approach from
which the one-sorted case can be derived.

2.1.2 Structure of the theory

The purpose of the theory of evolving algebras is to provide operational semantics for
arbitrary algorithms, i.e. to provide models for computational processes. This goal is
achieved by modelling a computation as a run of an evolving algebra. In other words,
the theory is meant to explain the phenomenon of computation, and the explanans it
offers for this explanandum is the notion of a run.

Thus, the notion of a run constitutes the focal point of the core theory of evolving
algebras. All other notions of the theory are ancillary to it; they derive their right of
existence solely from their contribution to the definition of this central notion. In
figure 2.1 the notions of the theory have been depicted as nodes in a tree-like structure.
The edges in this graph lead from definiendum to definiens. For example, the notion

20 Chapter 2. The core theory of evolving algebras

of a transition graph is defined in terms of the notions of a state, of a state transition,
and of a program. Thus, figure 2.1 depicts part of the definitional structure of the
theory of evolving algebras. The root node, which is no definiens of any other notion,
is of course the notion of a run.

The definitional structure of the theory is not depicted in its entirety in figure 2.1.
Only the upper part of the structure is shown. The bottom part has been pruned away,
because too many nodes and arrows would clutter up the picture. In later sections,
some portions of the hidden part will be depicted separately. Among the omitted
nodes are the direct definientes of the notions of state, program, and transition. Also,
the notions of various groups of identifiers and expressions, which form the base of
the definitional structure, are hidden.

The notion of an evolving algebra is absent from the definitional structure, which
may come as a surprise to the reader. In the informal account of the preceding
chapter, we actually used the term “evolving algebra” ambiguously between, on the
one hand, a run, and on the other hand, the triple of elements needed to specify a
run: the signature, the initial state description and the program. In this chapter, we
will preserve the latter meaning of the term. Thus, an evolving algebra can be defined
as a triple of a signature, a program and an initial state. The three notions involved
in this definition, signature, program, and state are each ancillary to the definition of
the notion of a run, but the notion of an evolving algebra itself is not. The utility of
this latter notion lies in the grouping together of the elements that are necessary for
specifying a particular run. But for the purpose of specification, the three elements will
do quite well ungrouped. The notion of an evolving algebra is therefore not included
in the definitional structure of which the notion run is the root.

Strictly speaking then, the initial state, the program and the signature are the only
three components of an evolving algebra, while the other states, the state transitions,
the transition graph and the runs are not actually part of the evolving algebra, but
merely induced by it. Still, speaking somewhat informally, we will simply speak of
the states of the evolving algebra in stead of the states induced by the algebra, and
likewise for the other entities induced by the evolving algebra.

2.1.3 Structure of the chapter

The organization of the exposition of the theory of evolving algebras in this chapter
can be outlined by reference to the definitional structure. In section 2.2 the stem of the
definitional tree will be discussed, containing the notions of a run and of a transition
graph (see figure 2.1). Next, section 2.3 will deal with the basis of the definition-
al structure, which contains notions of various groups of identifiers and ezpressions.
Then, the three subtrees below state, below program, and below transition will suc-
cessively be discussed in sections 2.4, 2.5, and 2.6, thus bridging the gap between the
stem and the base of the definitional tree. Finally, in section 2.7, a definition will be
constructed of a notion of consistency for evolving algebra update sets.

2.2 Runs and the transition graph

We will first concern ourselves with the stem of the definitional structure. As can be
seen from figure 2.1, the notion of a run is defined in terms of the notion of a transition
graph. A transition graph, in its turn is defined in terms of states, programs, and
transitions, as follows:

2.3. Identifiers and expressions 21

Definition A {ransition graph is a directed graph the nodes of which are states
and the edges of which are transitions effected by the program.

This definition can be clarified as follows. Applied to an initial state, a program
can effect transitions to one or more successor states. Application of the program
to these successor states can effect transitions to further states, and so on, possibly
indefinitely. Thus, repeated application of the program amounts to the spinning of a
possibly infinite web of states connected by transitions: a transition graph.

In the upcoming sections, the definientes state, program, and transition of the
notion transition graph, will themselves be defined. Also, it will be made clear under
what conditions a program effects a transition from one state to another.

Given the notion of a transition graph, we can define the notion of a run as follows:

Definition A run is a path through a transition graph which starts at a certain
node, and which ends, if it ends, in a node that has no outgoing edges.

A run can be either an infinite path, in which case the modelled computation is non-
terminating, or it is a finite path which ends in a dead-end. The first node of a run is
called the initial state. Thus, a run is a chain of states connected by transitions which
are effected by a program P:

[R I S N N <

or, in case of non-termination:

Si=8 2.5, L

where S; is the initial state of the run.

We now turn form the stem of the definitional structure of the theory of evolving
algebras to its base.

2.3 Identifiers and expressions

In the description of the states and the program of an evolving algebra a number of
tdentifiers is used, with which ezpressions are built. These notions will be explained
in turn in the following two subsections.

2.3.1 Identifiers

The identifiers are gathered in a vocabulary.

The vocabulary, enhanced with some additional information about the identifiers it
contains, constitutes a signature. This additional information consists in restrictions
on what kind of entity each identifier can be used to identify. More specifically, the
following additional information is stored in the signature:

e Which identifiers are used to name sorts, which are used to name functions, and
which are used to name variables.

e Which sort and function identifiers are dynamic, which static.

e What signature the function named by each function identifier must have.

22 Chapter 2. The core theory of evolving algebras

o What the sort of each variable is.

At this point, we can not yet elaborate upon the static-dynamic distinction of iden-
tifiers. In the upcoming sections it will become clear that static identifiers have the
same interpretation in every state, while dynamic identifiers can have different inter-
pretations in different states.

Thus, a signature can be defined as follows:

Definition A signature is a sept-tuple:
(SSort, DSort, SFun, DFun, FunSigs, Vars, VarSorts)
where

e Ssort, Dsort, SFun, DFun and Vars are pairwise disjoint collections of static sort
identifiers, dynamic sort identifiers, static function identifiers, dynamic function
identifiers and variables, respectively.

e FunSigs is a function which maps function symbols to their signatures.

e VarSorts is a function which maps variables to their sorts.

When we actually describe a particular signature, we will not present it as a sept-
tuple. In stead, we will present it in the form of four lists, which respectively contain
static sort identifiers, dynamic sort identifiers, static function identifiers together with
their signatures, and dynamic function identifiers together with their signatures. The
variables and their sorts will not be mentioned at all, but will remain 1mplicit in
the program. Often, we will also integrate into the presentation of the signature a
partial description of the initial state. The signature of the example in section 1.2 was
presented in this form.

2.3.2 Expressions

Using the identifiers from the vocabulary, we can formulate expressions. Three groups
of expressions can be distinguished: terms, updatable terms, and conditions. The
second group is a subgroup of the first.

Terms

Variables and zero-ary function identifiers are simple terms. Complex terms are built
by providing n-ary functions with n arguments of the appropriate sort. Thus, terms
are recursively defined as follows:

Definition
1. If v is a variable of sort s, then v is a fterm of sort s.
2. If f is a function symbol of signature () — s, then f is a term of sort s.

3. If f is a function symbol of signature s; X s3 X -+ x s, — s (n > 0) , and
t1,t9,...,ty are terms of sort s1,s9,...,8,, then f(t1,12,...,%,) is a term of
sort s.

2.3. Identifiers and expressions 23

Updatable terms

A special subgroup of terms are called updatable terms. The variables are included in
this group, as well as all the terms that have a dynamic outermost function identifier.
Updatable terms can be recursively defined as follows:

Definition
1. If v 1s a variable of sort s, then v is an updatable term of sort s.

2. If f is a dynamic function symbol of signature () — s, then f is an updatable
term of sort s.

3. If f is a dynamic function symbol of signature s; X s3 x -+ -x s, — s (n > 0) , and
t1,ta,...,ty are terms of sort s1, sa,. .., Sy, then f(¢1,%2,...,1,) is an updatable
term of sort s.

As we will see in section 2.5 on programs, only updatable terms can be used as
subjects in updates; non-updatable terms are excluded from performing this role.

Conditions

Using the usual boolean constants {rue and false, the usual boolean connectives =, A,
V, the equality sign for terms =, and the predicate defined(t) on terms, we can build
boolean expressions from terms. These boolean expressions are called conditions.
Thus, conditions can be recursively defined as follows:

Definition
1. true and false are conditions.
2. If t is a term, then defined(t) is a condition.
3. If t; and t5 are terms , then t; = t5 is a condition.
4. If ¢ is a condition, then —e¢ is a condition.
5. If e; and ¢y are conditions, then ¢; A ¢9 and e1 V ey are conditions.

6. If ¢ 1s a truth-valued term, then ¢ is a condition.

The predicate defined(t) evaluates to true only if the term ¢ has a denotation other
than Undef according to the interpretation given by the current state.

As we will see in section 2.5 on programs, conditions will be used as guards in
rules. The applicability of a rule will depend on the value of the condition that is its
guard.

The identifiers and the expressions form the base of the definitional structure of the
theory of evolving algebras. The stem of this structure was described in section 2.2.
In the following section we will build the first of three bridges that will close the gap
between stem and base.

24 Chapter 2. The core theory of evolving algebras

2.4 States

In the foregoing section, the syntaz of three kinds of expressions was presented. In
this section, their semantics will be given. The syntactical description explains how
expressions such as terms, updatable terms and conditions are composed from the
identifiers in a vocabulary. As the word itself reveals, an expression, once built, can
be used to ezpress something. What is expressed is called the semantic value, or
the meaning of the expression. The association of meanings to expressions is called
an interpretation of those expressions. In this section it will be made clear how the
meanings of expressions are determined, i.e. what constitutes an interpretation of
them.

As an expression is built from certain identifiers, its meaning is composed from
the meanings of the identifiers. Hence, to determine the meanings of all constructible
expressions, all that needs to be given are the meanings of the identifiers in the vocab-
ulary. In other words, an interpretation of the identifiers completely fixes the values
of the expressions formed with them. If the interpretation of identifiers changes, so
do the values of expressions.

An interpretation of the identifiers of the vocabulary is also called a state, which
brings us to the following definition:

Definition A sfate is an association of meanings to the sort identifiers, function
identifiers, and variables in the vocabulary.

Hence, different interpretations of the identifiers in the vocabulary give rise to different
states. However, the states of a single evolving algebra are not allowed to differ in the
interpretation of static identifiers, but only in the interpretation of dynamic identifiers
and variables.

The vocabulary of an evolving algebra contains three different groups of identifier-
s: sort identifiers, function identifiers and variables. Likewise, its states can each be
divided into three interpretations: the interpretation of sort identifiers, the interpre-
tation of function identifiers and the interpretation of variables.

Interpretation of sort identifiers The meaning of a sort identifier is a set. Hence,
the sorts of evolving algebras are sets.

Interpretation of function identifiers The meaning of a function identifier is a
(partial) function of with signature which accords with the signature specifica-
tion in the vocabulary.

In the special case of a zero-ary function identifier, the meaning is a zero-
argument — and therefore constant — function that returns an element of the
codomain. In stead of this zero-argument function, one can take the element
that it returns as the meaning of the identifier.

Interpretation of variables The meaning of a variable is an element of the set
which is its sort.

Every sort identifier must have a meaning in every state; uninterpreted sort identifiers
are not allowed. Uninterpreted function identifiers are likewise not admitted, but
function identifiers are allowed to be interpreted as functions that are only partially
defined on the domain indicated by the signature. Consequently, some expressions
built from these function identifiers will be without meaning. The last category of

2.4. States 25

identifiers, the variables, do not need to have a meaning in every state; they are
allowed to be simply uninterpreted.

Only the meanings of identifiers and not of the expressions constructible from them,
are given in a state. However, the meanings of the expressions are determined by the
meanings of the identifiers from which they are built, and can be derived from them by
the process of evaluation. To reflect the distinction between what is explicitly given in
a state and what is merely determined by it through the process of evaluation, we will
call the meaning of an identifier its interpretation, and the meaning of an expression
(term, updatable term, or condition) its value. Since the meanings of expressions are
thus implicitly given in a state, we can speak of of the meaning of an expression in a
state equally as of the meaning of an identifier in a state.

Evaluation occurs in the usual manner. From the interpretation of identifiers, the
values of terms are determined, and from the values of terms the values of conditions
are determined. In general, an expression 1s undefined if any of its composing identifiers
is. Conditions of the form defined(t) and ¢; = t5 are exceptions to this rule. For
clarity, we will explicitly list our rules of evaluation. In order to make our treatment
more fluid, we will assume that uninterpreted identifiers and undefined terms have a
meaning after all: the special element Undef.

The evaluation of terms in a state S proceeds according to the following recipe:

e The value of a term v in state S is the interpretation of the variable v in S. If
the interpretation of the variable is Undef, so is the value of the term.

e The value of a term f in state S is the interpretation of the 0-ary function
identifier f in S. If the interpretation of the function identifier is Undef, so is
the value of the term.

e The value of a term f(#1...t,) in state S is the interpretation of the n-ary
function identifier f in state S, applied to the tuple of values of the terms ¢; in
S, provided none of the terms ¢; have the value Undef in S. Otherwise, the value
of the term f(¢1...%,) is Undef.

The evaluation of conditions proceeds along the following guidelines:
e The values of true and false in S are true and false, respectively.

e The value of defined(t) in S is false if ¢ has the value Undef in S. Otherwise,
the value 1s true.

e The value of ;1 = #5 in S is true if the values of ¢; and #5 in S are equivalent
according to some definition of equivalence of values of this sort. If ¢; and ¢,
do not denote equivalent values or have the value Undef in S, then the value is
false.

e The value of —c in S is true if the value of ¢ in S is false, and false if it is true.

e The values of ¢ A ¢y and ¢1 V e3 in S are determined by the values of ¢; and
¢y according to the usual truth tables for logical conjunction and disjunction,
respectively.

e The value of the condition ¢ in S i1s the value of the truth-valued term ¢ in S.
The value of the term 1s not allowed to be Undef.

26 Chapter 2. The core theory of evolving algebras

program

condition

Figure 2.2: Definitional structure below the notion of program.

Hence, all functions in an evolving algebra are strict in all their arguments. Terms
that contain uninterpreted variables or function identifiers that are not defined for the
arguments they receive, are likewise without meaning. There is only one exceptional
function, which is not strict in its argument: the special predicate defined(?), which
evaluates to false if the term ¢ does not have a meaning in the current state, and
otherwise to true.

The notion of state connects the base of the definitional structure of the theory of
evolving algebras to its stem. In the following two sections, two more connections will
be made.

2.5 The program

According to the definitions in section 2.2 the nodes of a transition graph are states.
These were defined in the foregoing section. The edges of a transition graph are
transitions. Because the transitions are effected by the program, in this section we
will consider the notion of a program before we turn to the notion of transition in
the following section. The portion of the definitional structure below the notion of
program has been depicted in figure 2.2.

A program consists of a number of transition rules that each specifies a set of
updates and a condition for their application. Thus, a program is defined in terms of
rules as follows:

Definition A program is a finite set of transition rules.

Rules, in turn, are defined in terms of conditions and updates:
Definition A rule consists of a condition and a finite set of updates.
To specify a rule, the following syntax is used:

if (condition)
then (updates)

The condition that appears in a rule is also called its guard. It indicates when the
rule is applicable.

2.6. Transitions 27

transition

applicability

(effect of update set)

effect of update

Figure 2.3: Definitional structure below the notion of transition.

There are three possible kinds of updates: local function updates, extend updates
and remove updates. We will consider each of these kinds of updates in turn:

Local function update To specify a local function update, the following syntax is
used:
(updatable term) := (term)

The updatable term indicates the subject of the update.
Extend update To specify an extend update, the following syntax 1s used:

new (variable) : (dynamic sort identifier) with
(updates)

The sort of the variable must be be in accordance with the dynamic sort identi-
fier. The nested updates are again finite in number and can again be of all three

kinds.
Remove update To specify a remove update, the following syntax is used:
rem (updatable term) : (dynamic sort identifier)

The sort of the updatable term must again be in accordance with the dynamic
sort identifier.

Two connections between the stem and the base of the definitional structure of the
theory of evolving algebras are now in place. In the next section, the third and final
connection will be made.

2.6 Transitions

In the previous section, programs were described purely as syntactical objects. In the
current section, we will provide them with a semantics. The semantics of a program
consists in its effect upon states, which are transitions. The notion of a transition is
the third definiens of transition graph, as can be seen from figure 2.1 and the definition

28 Chapter 2. The core theory of evolving algebras

in section 2.2. The portion of the definitional structure below this notion has been
depicted in figure 2.3.
A transition is a relation between two states, indexed by the program. In section

2.2 the notation S; P, Si+1 has already been used for this relation. We define the
relation by giving the conditions under which it obtains.

Definition A {ransition of one state to another exists if, and only if, (1) the pro-
gram contains a rule which is applicable to the first state, and (2) the effect of firing
the updates of this rule at the first state produces the second.

Hence, the definientes of transition are applicability of a rule to a state, and effect of
updates. We will consider these notions in turn in the following subsections.

Note that several transitions may emanate from a single state, due to the applica-
bility of more than one rule. This feature introduces non-determinism into evolving
algebras on the level of rules. If several rules are applicable at once at some point
during a run, one is picked at random.

2.6.1 Applicability of rules

The condition in the if-clause of a rule is called its guard. A rule is applicable in a
certain state S if its guarding condition evaluates to true in S. If the guard evaluates
to false the rule is not applicable. Guards are never allowed to be undefined.

2.6.2 Effects of updates

The effect of an update set upon a state is defined in terms of the effects of all the
individual updates that it contains.

Definition The effect of a consistent update set upon a state is the cumulative
effect of the individual updates in this set upon the state.

Three questions about this definition need clarification: (1) what does it mean for an
update set to be consistent, (2) what are the individual effects of the updates in the
update set, and (3) how are these individual effects accumulated to produce the effect
of the entire update set?

Individual effects of updates can only be sensibly accumulated if they are compat-
tble with each other, 1.e. if they do not assign different values to the same subject. An
update set whose updates are all compatible with each other is said to be consistent.
We will answer the first question in section 2.7 by giving a rigorous definition of com-
patibility of updates and consistency of update sets. In the meantime, it 1s sufficient
to know that the consistency condition of update sets ensures that the effects of the
individual updates in these sets can sensibly be accumulated.

We will now successively formulate the answers to the third and second question.

A ccumulation of individual effects

Suppose a consistent update set contains the individual updates uy, us, ..., u,. Fur-
ther, suppose state S is the current state upon which the update set 1s supposed to
take effect. We can then construct a sequence of states S, S1,S53,...,S,. where each
state S; is the effect upon its predecessor of one of the individual updates uy, us, ..., u,
evaluated in state S. The last state Sy, then, is the total effect of the update set upon
S.

2.6. Transitions 29

The stipulation that the individual updates be evaluated in state S| rather than in
the intermediate states upon which they take effect, is of the utmost importance. To-
gether with the supposition that the update set is consistent, this stipulation ensures
that the order of application of the individual updates is of no consequence; the total
effect S, 1s the same for every application order. Through this irrelevance of applica-
tion order, parallelism and determinism on the level of update sets is accomplished.

Note, by the way, that the intermediate states S1,Ss,...,S5,_1 are not nodes of
the transition graph. They are auxiliary to the definition of a transition from S to
Sn, but they do not actually occur during this transition. In other words, transitions
are atomic, even if their update set contains several updates.

Individual effects

We will consider the individual effect of each kind of update in turn. The reader may
keep in mind that the local function update is intended to model the phenomenon
of destructive assignment, and the extend and remove update are intended to model
allocation and deallocation of storage space, respectively.

The effect of a local function update Loosely speaking, the effect of a local func-
tion update upon a state is to change the value of the updatable term which is
the subject of the update, into the value of the term on the right-hand side. If
the updatable term is a variable, this change of value consists in a local change
of the interpretation of variables. If the updatable term contains a function i-
dentifier, the change of value consists in a local change of the interpretation of
this function identifier.

The effect of an extend update Due to the nested update set within an individ-
ual extend update, its effect 1s somewhat more complicated, and can best be
described in several steps. Suppose the dynamic sort symbol is d, and the vari-
able is v.

To begin with, the state S upon which the update takes effect is changed in two
places. First, the set which is the meaning of d is enlarged with one element.
Second, the interpretation of the variable v is changed into this newly added
element. We will call the state thus changed S°.

Then, the nested update set of the extend update takes effect upon the state
S° in parallel as described in the paragraph 2.6.2. The nested update set is of
course not evaluated in S, but in S°, the state upon which it takes effect. We
will call the state which results 7°.

Finally, the state T° is changed by restoring the variable v to its original value
— the value it had in state S. The resulting state 7" is the total effect of the
individual extend update.

In short, the transition S Foris composed as follows:
§S—s L1 —T

where U denotes the nested update set. Note again that the intermediate transi-
tions and states, S° and T° do not actually occur, are not nodes of the transition
graph.

30 Chapter 2. The core theory of evolving algebras

The effect of a remove update A remove update contains a dynamic sort identi-
fier d and an updatable term ¢. Its effect is to impoverish the set which is the
interpretation of d, by one element: the value of the term ¢.

Consequently, all terms that had the removed element as their meaning (among
which t), as well as the terms that have subterms which had the removed element
as their meaning, will become undefined.

Since the outermost function identifier of the subject of a local function update,
and the sort identifiers of a extend or remove update are always dynamic identifiers,
updates can never effect a change to the interpretation of static identifiers, but only
to that of dynamic identifiers. Hence, the static portions of all states of an evolving
algebra are the same.

2.7 Consistency

In this section we will construct a notion of consistency of evolving algebra update
sets. We will start in section 2.7.1 by reflecting on the purpose of having a notion
of consistency in the theory. Next, we will investigate how much freedom we have in
defining the notion, i.e. we will formulate minimal conditions which any definition of
consistency must satisfy. Finally, we will construct and adopt a definition.

2.7.1 Purpose of a notion of consistency

The transition rules of an evolving algebra are executed one after an other i.e. sequen-
tially. If several rules are applicable in a state, one of them is non-deterministically
chosen to be executed. Thus, at the level of rules, evolving algebras are sequential
and non-deterministic.

In contrast, the updates in an update set of an evolving algebra transition rule
are executed in parallel, i.e. concurrently or interleaved. Moreover, parallel execution
of update sets is supposed to have a deterministic effect. Thus, at the update level,
evolving algebras are parallel and deterministic.

However, update sets are not a priori guaranteed to have a deterministic effect
under parallel execution. Consider for example the following two updates.

a:=1
a:=2

Firing these updates in parallel might either produce a state in which a equals 1 or a
state in which a equals 2. Hence, the effect of firing these updates in parallel is not
determinate. In section 2.6.2, the effect of firing a set of updates in parallel is defined
as the accumulation of the effects of the individual updates in the set. If the order
in which the individual effects are accumulated is inconsequential to the total effect,
then the parallel execution is determinate.

The purpose of introducing a notion of consistency into the theory of evolving
algebras is to provide a condition on update sets which guarantees that the order of
the updates is irrelevant, and that consequently the update set has a deterministic
effect when fired in parallel. Only consistent update sets will be considered to be
executable, and just those evolving algebras will be admitted whose evolution involves
firing consistent update sets only.

2.7. Consistency 31

2.7.2 Sources of inconsistency

The purpose of a notion of consistency puts a restriction on its definition. Consistency
must be defined in such a way that it is a sufficient condition for irrelevance of firing
order. In this section we will pinpoint pairs of updates whose order is not irrelevant.
These update pairs must be marked as inconsistent by any notion of consistency, and
can be viewed as sources of inconsistency. Through the inspection of these update
pairs, we will be guided to the definition of consistency in subsection 2.7.3.

Compatibility

Consistency is a property of update sets. To facilitate its definition, we will reduce it
to a property of pairs of updates: compatibility. An update set is said to be consistent
in a state S if all individual updates in the set are pair-wise compatible in that state.
We will now investigate compatibility of pairs of several kinds of updates.

Local function updates

All definitions of compatibility must exclude pairs of local function updates that assign
different values to the same location. The following two updates, for instance, are
incompatible:

fla) =1

fla) :=2
A stricter definition of compatibility can also be given, which excludes assignments to

the same location irrespective of whether the value assigned is the same or different.
Such a stricter definition would mark the following two updates incompatible:

1
1

The benefit of opting for additional strictness is that it might render evaluation of
right-hand sides during consistency checking unnecessary. However, we will adopt the
more permissive variant.

Thus, our definition of compatibility will mark two updates f(¢1...¢,) := ¢ and
g(s1...sy) := d incompatible in a state S in the event that three conditions are met:

e The dynamic function names f and ¢ are the same.

e The subterms sy ...s, of the first left hand side have the same values in S as
the corresponding subterms #; ...%, of the second left hand side.

e The right hand sides ¢ and d have a different value in S.

In the special case that the dynamic function names denote 0-ary functions, the up-
dates have the forms a := ¢ and ¢ := d. The left-hand sides of these updates have no
subterms, which makes the second condition trivially true.

Extend updates

Extend updates contain nested update sets. Any definition of compatibility must
entail that an extend update is incompatible with an update that is incompatible to

32 Chapter 2. The core theory of evolving algebras

any of its nested updates. For instance, the following two updates are incompatible:

fla) =1

new z : u with
flz) =1
fla) =2

The local function update f(a) := 1 conflicts with the extend update, because it
conflicts with the second nested local function update f(a) := 2.
Likewise, the following two updates are incompatible:

new z : u with

fla) =2
new z : u with
fla) =1

These two extend updates conflict, because the nested local function updates f(a) := 2
and f(a) := 1 conflict.
Note, however, that the following two updates do not need to be incompatible:

new z : u with

flz) =2
new z : v with
flz) =1

The nested local function updates f(z) := 2 and f(z) := 1 do not conflict, because
the variable x is bound to a different element by each extend update.

So, in general, an extend update new a : v with wu; ...u, is incompatible to an
update u in S if the following condition is met:

e At least one of the updates uq...u, is incompatible with the update u in the
state S extended with a new element with the name a. (We assume that the
name a does not appear in u, so that no name clash occurs.)

Notice that this condition uses the notion of incompatibility which it is intended to
help define. This recursiveness does not present a problem, because the number of
extend updates to be considered will become smaller at each step.

Remove updates

With respect to the compatibility of remove updates, one can follow a strict or a more
permissive line. Consider the following pair of remove updates:

rem a : v
rem b:v

According to a strict stance towards remove updates, these updates are incompatible
when the elements @ and b are the same. The motivation for this is that removing
the same element twice is not meaningful, or at least very counter-intuitive. However,
we could interpret the second removal of an element simply as ineffectual. Then the
order in which these removals take effect is inconsequential, and no compelling reason
exists to rule them incompatible. Still, we will not adopt this latter, more permissive

2.7. Consistency 33

stance. We will define the above remove updates to be incompatible if they remove
the same element.

We also need to investigate the relationship of remove updates to local function
updates. Consider the following pair of updates:

rem a v

g(s1...85):=d

Two situations can occur in which the compatibility of these updates can be ques-
tioned. In the first situation, the element to be removed and one of the subterms of
the left hand side are the same. In the second situation, the element to be removed
and right hand side are the same. These situations can even occur simultaneously.
According to a strict stance, the updates are incompatible in both situations. The
motivation for this is that the effect of the local function update is annulled by the
remove update. The local function update aims to create a new state in which the left
hand side has assumed the right hand side as its value. The remove update, however,
causes the left hand side to become undefined. Still, this need not be an absolutely
compelling reason to consider the disputed updates incompatible. The remove update
annuls the effect of the local function update, irrespective of the order in which they
are executed. Hence, firing them in parallel has a determinate effect. Still, we will
not adopt this latter, more permissive stance. We will define the above updates to
be incompatible when the right hand side or a subterm of the left hand side is the
subject of the removal.

2.7.3 Definition of consistency

Having isolated the sources of inconsistency in the previous sections, we will now
present a definition of consistency. As promised, this definition will be formulated in
terms of compatibility, which is defined here as well.

Consistency

Consistency is a property of update sets with respect to an evolving algebra state.
Compatibility is a property of pairs of updates with respect to a state. The former is
defined in terms of the latter as follows:

Definition An update set U is consistent in state S if and only if all updates in U
are pairwise compatible in S.

Compatibility

We will give a definition of compatibility in terms of in-compatibility. In the following
table, the first column contains four pairs of potentially incompatible updates. The
second column contains for each of these pairs the condition under which incompati-

34 Chapter 2. The core theory of evolving algebras

bility actually occurs.

Pair of updates Condition of in in-compatibility

g((ilin)):_il f=gandVi-t;=s;inSandc#din S
1...8,) =

new a: v with

Uy ... Up Ji - u and u} are incompatible in S’
u
rem a : v)
a=bin S
rem b:w
rem a : v

di-a=s;inSora=din S

g(s1...8):=d

In the second condition, S’ denotes the state S extended with a new element of v with
a name a’ that does not occur in u, and u} denotes u; in which a has been renamed to
the new name a’. The special cases in which n equals 0 are not explicitly mentioned
in this table. Their conditions of incompatibility are straightforward simplifications
of the corresponding general cases.

Referring to the given table of update pairs and incompatibility conditions, we can
now define compatibility as follows:

Definition A pair of updates is incompatible in a state S if and only if they are of
one of the forms in the first row, and they satisfy the corresponding condition in the
second row. Otherwise, they are compatible.

All notions in the core theory of evolving algebras have now been explained and
defined. Hence, the exposition of the core theory is now complete. In the next chapter,
this theory will be enhanced by the introduction of modules.

Chapter 3

Modularization of evolving
algebras

3.1
3.2

3.3

3.4

3.5

3.6

3.7
3.8

The purpose of modularization 36
Preparatory adaptations of the theory 36
321 Start 37
3.2.2 StOop e 37
Modules as parameterized abstractions 37
3.3.1 Categorization of expressions 37
3.3.2 Abstractions Lo oo 38
3.3.3 Parameterization oL oL 38
3.34 Returnvalues Lo oo 40
3.3.5 Visibility across abstraction boundaries 41
Evolving algebra modules as parameterized abstractions 42
3.4.1 Application of the abstraction principle 42
3.4.2 Application of the correspondence principle 43
3.4.3 Visibility across module boundaries 44
Functional modules 00000 44
3.5.1 Specification o 44
3.5.2 Imvocation L Lo 45
3.5.3 Semantics Lo Lo 45
3.5.4 Example evolving algebra with functional modules 45
Procedural moduleso Lo oo 46
3.6.1 Specification oo 47
3.6.2 Invocation Lo 47
3.6.3 Semantics Lo 48
3.6.4 Example evolving algebra with procedural modules 48
3.6.5 More general procedural modules 49
Modules and consistency L 51
Modularized evolving algebras in the literature 52
3.8.1 Modularization in leanEA 52
3.8.2 Modularization in Diesen 53

35

36 Chapter 3. Modularization of evolving algebras

3.9 Modules and parallelism 53
3.9.1 Terminological remarks 53
3.9.2 Parallelism in the core theory of evolving algebras 54
3.9.3 Modules and parallelism 55
3.9.4 Parallel and distributed evolving algebras in the literature . 56

3.10 Modules and structured evolving algebra design 57
3.10.1 Modular evolving algebra design 58
3.10.2 Modular evolving algebra proofs 58

In chapter 2 the core theory of evolving algebras was expounded. This chapter will
enhance this theory by introducing the concept of a module. We will start by reflecting
on the the purpose of modularization of evolving algebras in section 3.1. To prepare
the theory for modularization, two small adaptations are made in section 3.2. Section
3.3 expounds a number of concepts from programming languages theory, which views
modules as parameterized abstractions. We will take this view as our point of depar-
ture for the modularization of evolving algebras in section 3.4. This will lead us to the
design of two kinds of evolving algebra modules: functional modules and procedural
modules. These will be defined in sections 3.5 and 3.6. The consequences of modular-
ization to the notion of consistency in the theory of evolving algebras are investigated
in 3.7. We will conclude the chapter by investigating the benefits of functional and
procedural modules with for parallelism and structured evolving algebra design.

3.1 The purpose of modularization

The purpose of modularizing evolving algebras is twofold.

One purpose of modularizing evolving algebras is to be able to divide an evolving
algebra specification into relatively independent parts. This relative independence
will make it simpler to formulate, understand, adapt, and compare specifications.
Especially, large evolving algebras stand in need of modularization. In section 3.10 it
will be shown that modules can be used in structured evolving algebra design.

Another purpose of modularizing evolving algebras is to incorporate large-grain
parallelism into the language. In the core theory of evolving algebras, updates are
executed in parallel, and expressions may be evaluated in parallel. But due to the
limited complexity of updates and expressions, the granularity of this parallelism is
small. Modularizing evolving algebras can remove the restrictions of complexity of
updates, thereby making the granularity of update parallelism variable. In section 3.9
the use of modules in parallel evolving algebras is explained.

3.2 Preparatory adaptations of the theory

In this section two small adaptations of the simple theory are proposed which will
make the introduction of modules into the theory smoother.

3.3. Modules as parameterized abstractions 37

3.2.1 Start

In the simple theory, both the fixed meanings of the static identifiers of an evolving
algebra, and the initial meanings of the dynamic identifiers are specified by giving
the initial state. In the adapted theory, we will separate these concerns. The fixation
of the static identifiers will be done by giving the static portion of the initial state.
The initialization of the dynamic identifiers is done by specifying a distinguished set
of updates, called the start update set. This update set will be fired at the initial
state before the execution of the program. In the example given in the informal
introductory chapter (chapter 1) this method of two-phase initial state description
already been demonstrated.

3.2.2 Stop

The execution of an evolving algebra program terminates when a state is reached in
which no rules are applicable. In the simple theory, no distinction is made between
abnormal and normal termination. In the adapted theory, we will be able to make
this distinction by providing a stop condition. When the execution of the program
terminates, the termination is said to be normal if and only if the stop condition
evaluates to true in the final state.

Stop conditions are useful for documentation and detection of unintended behavior
of evolving algebras. They can also be helpful in the construction of modular proofs
about modular evolving algebras.

3.3 Modules as parameterized abstractions

The construction of a theory of modular evolving algebras is not much unlike the
construction of a structured programming language. For this reason we will take a
number of principles of programming language theory into consideration. This section
presents the relevant principles, while the next section applies these principles to the
language of evolving algebras.

3.3.1 Categorization of expressions

Traditionally, at least two categories are distinguished among the phrases of pro-
gramming languages. The first category comprises those phrases which are evaluated,
called functional expressions, or just expressions. The second category consists of those
phrases which are ezecuted, called commands, statements or imperative expressions!.
The essential difference between the two categories is the following: the first kind
of expression represents a computation which produces a value, the second kind of
expression represents a computation which alters a state.

The expressions of evolving algebras can be categorized in this way as well. E-
volving algebra terms fall in the category of functional expressions; evolving algebra
updates fall in the category of imperative expressions.

I These two categories are not disjunct in all languages. In fact, in languages such as Algol-68 and
ML these two categories coincide.

38 Chapter 3. Modularization of evolving algebras

3.3.2 Abstractions

In programming language theory, the word “abstraction” is used to refer to program-
ming language constructs that enable the programmer to separate the specification of
a sub-computation from its use or invocation. Abstractions are categorized by the
expression category to which their invocation belongs. Two common categories of
abstractions are function abstractions, which are abstractions over functional expres-
sions, and procedure abstractions, which are abstractions over imperative expressions.
This correspondence between categories of abstractions and categories of expressions,
is expressed by the following principle of programming language theory ([Wat90, 92]):

Abstraction principle It is possible to construct abstractions over any category of
expressions?, provided only that the phrases of that category specify some kind
of computation.

In the next section we will apply this principle to the categorization of expressions of
evolving algebra theory.

The separation of specification and invocation accomplished by abstraction creates
the need of passing information from invocation to specification and vice versa. In the
following subsections, we will discuss three available methods for passing information
across the boundary of an abstraction: parameters, return expressions, and identifiers
that are visible across abstraction barriers.

3.3.3 Parameterization

An abstraction does not need to represent one particular computation, but may be
parameterized, thus representing a family of computations. The parameters used in
the specification of the abstraction are called formal parameters. The parameters
supplied at the invocation of the abstraction are called actual parameters.

The formal parameters of a parameterized abstraction must be associated to the
actual parameters of a particular invocation of the abstraction. The manner in which
this association is realized is called a parameter mechanism. One group of parameter
mechanisms are called copy mechanisms, because they are most naturally implemented
by copying. Another group of parameters are called denotational mechanisms, because
they are usually implemented by referencing. We will discuss these two groups in turn.

Copy parameter mechanisms

Three parameter mechanisms fall into the category of copy mechanisms. These mech-
anisms are distinguished by the moments at which the value of the actual parameter
is transferred to the formal parameter and wvice versa.

value parameters At the moment of invocation, the value of the actual parameter
is transferred to the formal parameter. Value parameters can be used to pass
information into an abstraction only.

result parameters At the moment of return, the value of the formal parameter is
transferred to the actual parameter. Return parameters can be used to pass
information out of an abstraction only.

2In Watt [Wat90] the term “syntactic class” is used in stead of category of expressions.

3.3. Modules as parameterized abstractions 39

value-result parameters The value-result parameter is a combination of the other
two. At the moment of invocation the value of the actual parameter is transferred
to the formal parameter, and at the moment of return the value of the formal
parameter is transferred to the actual parameter. Value-result parameters can
be used to pass information both into and out of an abstraction.

Assignments are allowed on each of these kinds of parameters, but an assignment to
a formal parameter has no effect on the value of a another formal parameter that
corresponds to the same actual parameter.

This group of parameter mechanisms are called copy mechanisms, because the
transfer of values of actual parameters to formal parameters and wvice versa is most
naturally implemented by a copy operation.

Denotational parameter mechanism

Two parameter mechanisms fall into the category of denotational mechanisms. The
distinction between these parameters concerns whether assignments are allowed to be
performed on them or not.

constant parameters Assignments on constant parameters are forbidden.

variable parameters Assignments on variable parameters are permitted. An as-
signment to a formal parameter changes the values of all formal parameters that
correspond to the same actual parameter.

In case of both these kinds of parameters, the value of the actual parameter is trans-
ferred to the formal parameter at the moment of invocation. Hence, both are usable
to pass information into an abstraction. Only in the case of variable parameters are
the values of formal parameters transferred to their actual parameters, at the moment
of return. In case of a constant parameter, the actual parameter does not obtain the
value of the formal parameter. As a result, constant parameters are not suited to pass
information out of an abstraction, while variable parameters are.

These two parameter mechanisms are called denotational mechanisms, because
they are usually implemented by referencing. At the moment of invocation, a reference
is installed from the formal parameter to the actual parameter, and inspections and
assignments of the formal parameter are performed on the referenced actual parameter.
As a consequence, at the moment of return the values of actual variable parameters
are already equal to the values of the formal parameters, and no explicit transfer of
values is needed.

Comparisons can be made between similar parameter mechanisms from different group-
s. For instance, value and constant parameters are similar in that they are used to
transfer information into, but not out of an abstraction. They are different in that
assignment 1s allowed on a value parameter, but not on a constant parameter.

Value-result and variable parameters are similar in that they are used to transfer
information both into and out of the abstraction. They are different in that an as-
signment to a formal variable parameter influences all formal variable parameters that
share its actual parameter, while assignments to formal value-result parameters never
influences the value of any other formal parameter.

When two formal parameters correspond to the same actual parameter, they are
said to be aliases of each other. The occurrence of aliasing is often not intended by
the programmer, and can be the cause of serious flaws in the program. In the case

40 Chapter 3. Modularization of evolving algebras

of aliased value-result parameters, different values are transferred to the same actual
parameter. Which value overrules which is decisive for the result of the invocation,
but the programmer is often unaware of the conflict. In the case of aliased variable
parameters, an assignment to one variable changes the value of both. The programmer
usually does not anticipate this. In order to prevent mistakes due to unanticipated
aliasing, a programming language designer might choose to prohibit aliasing altogeth-
er. If such a prohibition is in effect, the semantical difference between value-result
parameters and variable parameters vanishes.

The properties of the parameter mechanisms from both groups are summarized in
the following table:

| value | result | value-result | constant | variable

Assignment allowed yes yes yes no yes
Assignment changes alias no no no yes
Pass info into abstr. yes no yes yes yes
Pass info out of abstr. no yes yes no yes

The second line of this table indicates for each parameter mechanism whether assign-
ment to a formal parameter changes the values of its aliases inside the abstraction.
For constant parameters, this line of the table has no entry. This is due to the fact
that assignment is not allowed on constant parameters.

The correspondence principle

There is a certain similarity between formal parameters and declarations. Both intro-
duce a new name into the vocabulary of the program (both contain a declarative (vs.
applied) occurrence of a name). The difference between a formal parameter and a dec-
laration, 1s that a declaration not only specifies the new name, but also the entity to
which it will be bound. A formal parameter, on the other hand, only specifies the new
name. The entity to be bound is specified by an actual parameter in an invocation.

The correspondence between declarations and formal parameters is expressed by
the following principle of programming language theory ([Wat90, 99]):

Correspondence principle For each form of declaration there exists a correspond-
ing parameter mechanism, and vice versa.

The correspondence principle should be interpreted to be prescriptive as well as de-
scriptive. The regularity of a language benefits if a correspondence exists between its
forms of declaration and its kind of parameters. In particular, no parameter mecha-
nisms should be introduced into a language that do not correspond to one of its forms
of declaration.

When several parameter mechanisms are available in a language, it is imperative
that for each parameter it is evident according to which mechanism it operates. In
many languages, the kinds of the parameters are immediately evident only in the
specification of the abstraction. The kinds of the actual parameters in the invocation
must usually be derived by looking up the kind of the corresponding formal parameter
in the specification. Most likely, the readability of programs improves when the kind
of actual parameters can be gleaned from the invocation itself.

3.3.4 Return values

The parameter mechanisms described above serve to pass values into and out of ab-
stractions. But there is another way of passing a value out of an abstraction, which

3.3. Modules as parameterized abstractions 41

makes no use of parameters. This method is used in case of abstractions over func-
tional expressions, and is generally known as returning a value. In this mechanism,
no actual parameter is present, since the invocation itself takes on the return value.
No formal parameter needs to be present either, since inside the abstraction the value
can be produced by evaluating a functional expression in stead of by assigning a value
to a variable. In fact, the following mechanisms are most common:

e A return expression is explicitly specified for each abstraction, which is evaluated
at the moment of exiting the abstraction. The value thus obtained is the return
value of the abstraction (Modula2, Pascal).

e The body of the abstraction 1s itself a functional expression. The value obtained
by evaluating it is at the same time the return value of the abstraction (functional
languages).

Which of these two mechanisms is most appropriate is dependent on to which category
of expressions the body of the abstraction belongs.

All abstraction over categories of expressions which are evaluated, must return
values according to some return mechanism.

Return principle Any abstraction over a category of expressions which can be eval-
uated, must return a value.

The abstraction principle and the correspondence principle are merely guidelines for
the language designer, which lead to increased regularity. But the return principle can
not be dismissed: its satisfaction is compulsory.

3.3.5 Visibility across abstraction boundaries

Parameters and return expressions are used to pass information across abstraction
boundaries. A third method exists to pass information into and out of abstractions.
This method amounts to allowing identifiers declared outside the abstraction to be
visible inside the abstraction. In subsection 3.3.3 we assumed and required all iden-
tifiers appearing free in an abstraction body to be bound by parameter declarations
in the abstraction header. It is possible to drop this requirement, and to allow free
identifiers to appear in an abstraction that are not bound by parameter declarations
in the header, but by declarations outside the abstraction. These identifiers can be
viewed as non-locally declared parameters.

Allowing visibility across abstraction barriers creates the obligation of determining
which declaration binds each free identifier. Two different binding strategies can be
adopted: dynamic binding or static binding. According to the strategy of dynamic
binding, the context of invocation of the abstraction determines by which declarations
its free identifiers are bound. According to the strategy of static binding, the context of
specification of the abstraction is determinative. Static binding has several advantages
over dynamic binding. Firstly, static binding can be done at compile-time, while
dynamic binding can only be performed at run time. Thus, binding errors are detected
in a later phase. Secondly, dynamic binding leads to programs that are hard to
understand because the binding declarations can not be determined from the program
text alone. Finally, and most importantly, dynamic binding is incompatible with
static type checking These three reasons lead us to favor static binding over dynamic

binding.

42 Chapter 3. Modularization of evolving algebras

Since each identifier that is visible across an abstraction barrier can be viewed
as a non-locally declared parameter, it must be one of the five kinds of parameter
listed in subsection 3.3.3. Recall that result parameters, value-result parameters and
variable parameters are suited to pass information out of an abstraction, while value
parameters and constant parameters are suited to pass information info the abstrac-
tion only. To use free identifiers for the purpose of passing information out of an
abstraction yields programs that very hard to understand. In these programs one
cannot glean from the invocations of abstractions nor from their headers, which vari-
ables are affected by them. As a result, well-designed programming languages will
not permit free identifiers that operate as result parameters, value-result parameters
or variable parameters. Hence, free identifiers should either be non-locally declared
constant parameters or non-locally declared value parameters.

The possibility of visibility across abstraction boundaries permits parameter lists
to be shortened considerably. As a result, programs can become more concise, and
therefore easier to understand. On the other hand, visibility across abstraction bound-
aries has as disadvantage that abstraction specifications become dependent upon their
context, and can be understood only as parts of the program in which they appear.

3.4 Evolving algebra modules as parameterized ab-
stractions

Bearing in mind the concepts and principles of programming language theory pre-
sented in the previous section, we will set out to modularize the theory of evolving
algebras. In this section we will consider the consequences of the concepts and prin-
ciples of programming language theory to the theory of evolving algebras. In the
following sections, we will present functional and procedural modules.

3.4.1 Application of the abstraction principle

There are two categories of evolving algebra phrases which specify computations:
terms and updates. Consequently, the abstraction principle informs us that it is
possible to construct abstractions over terms and abstractions over updates. Since
terms specify functional computations, and updates specify imperative computations,
we will call these abstractions functional modules and procedural modules, respectively.

It is clear that procedural modules must be callable as updates, and functional
modules as terms. There is a choice, however, as to what category of expressions is
encapsulated by each kind of module, i.e. what kind of expressions the module bod-
ies are. One possibility is to let a procedural module encapsulate an update, and
a functional module a term. However, since the evolving algebra language does not
include local declarations, nor conditional terms or updates, the resulting expressive-
ness of module bodies would be very limited. Therefore, our approach will be to let
both kinds of modules encapsulate an entire evolving algebra. Consequently, the full
expressiveness of the evolving algebra language will be available within each module.

To build functional and procedural modules from the evolving algebras they are
supposed to encapsulate, we need to provide them with functional and procedural
interfaces, respectively. Sections 3.5 and 3.6 will explain how this can be done.

3.4. Evolving algebra modules as parameterized abstractions 43

3.4.2 Application of the correspondence principle
Evolving algebra specifications can contain four kinds of declaration:

static sort declaration Specifies the name of a static sort and the mathematical set
to which it is to be interpreted.

static function declaration Specifies the name of a static function and the math-
ematical function to which it is to be interpreted.

dynamic sort declaration Specifies the name of a dynamic sort, which will initially
be interpreted as an empty mathematical set.

dynamic function declaration Specifies the name of a dynamic function, which
will initially be interpreted as a function that is undefined for all its arguments.

Dynamic sorts and functions can be subjects of updates. Static sorts and functions
can not be updated.

According to the correspondence principle, parameter mechanisms can be con-
ceived corresponding to each of these kinds of declaration.

static sort parameter Upon entering the abstraction a static sort parameter re-
ceives the value of the actual parameter as its interpretation. No extend or
remove updates are allowed on the formal parameter. Thus, static sort param-
eters are instances of constant parameters.

static function parameters Upon entering the abstraction a static function pa-
rameter receives the value of the actual parameter as its interpretation. No
local function update is allowed on the formal parameter. Thus, static function
parameters are instances of constant parameters.

dynamic sort parameters Upon entering the abstraction a dynamic sort parameter
receives the value of the actual parameter as its interpretation. New-updates
and remove-updates are allowed on the formal parameter. Since aliasing will
be prohibited, there is no semantic distinction between value-result parameters
and variable parameters. Thus, dynamic sort parameters are equally instances
of value-result parameters as they are instances of vartable parameters.

dynamic function parameters Upon entering the abstraction a dynamic function
parameter receives the value of the actual parameter as its interpretation. Local
function updates are allowed on the formal parameter. Again, aliasing is pro-
hibited. Thus, dynamic sort parameters are instances of value-result or variable
parameters.

Not all of these parameter mechanisms are equally suitable to be introduced into
the theory of evolving algebras. In particular, the precipitate introduction of static
sort parameters and static function parameters would entail more radical departures
from the core theory than modularization calls for. Static sort parameters give rise to
type polymorphism, and static function parameters give rise to higher order functions.
Both these features are foreign to the core theory, and are not required for modulariza-
tion. Therefore, we ban static sort parameters altogether, and restrict static function
parameters to 0-ary functions names.

The remaining kinds of parameter are not equally suitable for both functional and
procedural modules. We will need to decide for each kind of module which kinds of
parameter to allow.

44 Chapter 3. Modularization of evolving algebras

3.4.3 Visibility across module boundaries

If visibility across module boundaries with static binding is to be allowed in the mod-
ularized theory of evolving algebras, then it must be possible to specify modules in
the context of other modules. Hence, nested specifications is a prerequisite to allowing
names to be visible across module bodies.

Our proposal for modularizing the theory of evolving algebras will not involve
nested specifications, and consequently, no visibility across abstraction boundaries
will be possible.

If nested specifications and visibility across module boundaries were introduced
into the theory in a later stage, it would need to be decided whether free identifiers are
to be handled as value parameters or as constant parameters. Names that are declared
outside a module as static names, are preferably handled as constant parameters. If
they were handled as value parameters, they would sudden become dynamic inside
the module.

In the following subsections we will explain for both kinds of modules how they are
specified, how they are invoked, and what their semantics are.

3.5 Functional modules

To make a functional module out of an evolving algebra, it must be provided with a
functional interface, 1.e. it must be made callable as a function, it must take arguments
and return a result. Since terms and updates are completely disjunct categories,
functional modules must be purely functional, i.e. side-effects must be prohibited.
Consequently, neither dynamic sort parameters, nor dynamic function parameters are
allowed, since they are instances of value-result or variable parameters. Thus, the
parameters of a functional module must static function parameters of arity zero.
Functional modules are abstractions over terms and terms are functional expres-
sions. Thus, according to the return principle, a functional module must return a
value. The body of a functional module is an evolving algebra, which is not a func-
tional expression. Hence, the second return mechanism, which uses the value of the
body as return value, is not an option in this case. We will use the first return
mechanism, which demands a return expression to be explicitly specified.

3.5.1 Specification

An evolving algebra can be provided with a functional interface by attaching a suitable
header to its specification. We propose the following general form for this header:

module fune (sf by : By,..,b, : By) 7r: R
(body)

where
e func is the name of the module.
e by, .., b, are function names.
e Bi,..,B, are sort names

e 7 is a term.

3.5. Functional modules 45

e R is a sort name.

e The body is a complete evolving algebra specification.

The sort names Bj,.., B, and R, should be declared in the signature of the body.
Together with the names b1, ..,b, the signature of the body forms the signature of
the module. The expression r, as well as all expressions occurring in the body should
be built from the names in this module signature. The names b4, .., b, are allowed to
occur in the body only as static function names, not as dynamic ones.

3.5.2 Invocation

The header of a functional module specification ensures that it can be called as a
function by other modules. In the calling module, the name of the called module is
used as a static function name. Thus, it may be used to built any expression which is
not used as the subject of an update. The general form of the invocation is as follows:

June(by, .. by)

where
e by,.., b, are terms.
The terms by, .., b, can be built from both static and dynamic function names, even

though their corresponding formal parameters can only be used as static function
names.

3.5.3 Semantics

The parameters of the functional module are all constant parameters. Hence, at
the moment of invocation the formal parameters are bound to the values of their
actual parameters. Then, the body, which is a complete evolving algebra, is executed.
When this evolving algebra terminates — if it terminates — the return expressions is
evaluated in the final state. The value obtained is returned as the value of the module
invocation.

3.5.4 Example evolving algebra with functional modules

We will now present an example of a modularized evolving algebra which make use
of functional modules. This modularized evolving algebra consists of two function-
al modules. The first functional module implements multiplication of two natural
numbers. Its specification 1s:

module mult (sf n,m: N) r: N
Signature:

static sorts

N = N
static functions

+: NxN—-=N = + : NxN-=N
—:NxN—-=N = —: NxN-=N
dynamic functions

r: N

1: N

46

Start:
1:=n
ri=0
Program:
if i #£0
thenr :=r+m
1i=i1—1

Stop: 1 =10

Chapter 3. Modularization of evolving algebras

This module works by letting a counter run from n to zero, and adding m to an

accumulator at each step.

The second module of our example evolving algebra implements the factorial func-
tion. It invokes the mult module to perform multiplication.

module fac (st n: N)r: N

Signature:

static sorts
N = N

static functions

—:NxN-—->N =

dynamic functions
r: N
i: N
Start:
=n
r:=1
Program:
if i #£0
then r := mult(r, i)
i=i—1

Stop: 1 =10

—NxN-—=N

This module operates by letting a counter run from n to zero, and multiplying an
accumulator by this counter at each step.

3.6 Procedural modules

To make a procedural module out of an evolving algebra, it must be provided with a
procedural interface, i.e. 1t must be made callable as an update, it must take arguments
and change the interpretation of dynamic sort names or dynamic function names. Like
regular updates, invocations of procedural interfaces have side-effects upon the state
at which they are fired. Therefore, procedurale modules must have dynamic sort and
function parameters as well as static function parameters.

3.6. Procedural modules 47

3.6.1 Specification

An evolving algebra can be provided with a procedural interface by attaching a suitable
header to its specification. We propose the following general form for this header:

module proc (sf by : By,..,b;: B;; ds Cy,..,Cpy; df dy : Dy, .., dy : Dy)
(body)

where

e proc is the name of the module.

e by, .., b; are function names.

e By,.., B; are sort names.

e (q,..,C,, are sort names.

e di,..,d, are function names.

e Dy,.., D, are sort names or sort expressions of the form (S;...S,) — S.

e The body is a complete evolving algebra specification.

The module signature consists of the body signature extended with the parameter
declarations. All expressions in the body should be built from the names in the module
signature. The sort names Bj,.., B; and the sort names (appearing in) Di,.., D,
should be declared in the module signature. The names b, .., b, are allowed to occur
in the body as static function names. The names dy,...,d, can be used as dynamic
function names. The sort names C1, .., Cy, can be used as dynamic sort names in the

body.
3.6.2 Invocation

The procedural interface ensures that the module can be called as an update by other
modules. The general form of the invocation of a procedural module is:

(C1,..,Cu; dr,..,dy) = proc(by,.., b)

where
e by,.., b; are terms.
e (U, ..,C,, are dynamic sort names.
e dy,..,d, are dynamic function names.

The names C1,..,C,, and dy, .., d, must be dynamic. The terms by . ., b; can be built
from both dynamic and static function names. To prevent aliasing, the dynamic sort
names C1,..,Cy, and the dynamic function names di,..,d, are all required to be
distinct.

48 Chapter 3. Modularization of evolving algebras

3.6.3 Semantics

The first set of parameters of the procedural module are constant parameters. The
other two sets of parameters are value-result or variable parameters. At the moment of
invocation all the formal parameters are bound to the values of their actual parameters.
Then, the body, which is a complete evolving algebra, is executed. When this evolving
algebra terminates — if it terminates — control returns to the calling module. If the
last two sets of parameters are value-result parameters, their values in the final state
are bound to the actual parameters just before return of control.

3.6.4 Example evolving algebra with procedural modules

We will now present a modularized evolving algebra which contains procedural mod-
ules. The first module creates a linked of natural numbers from zero to n.

module count (st n: N
ds ListElem
df head : ListElem — N,
tail : ListElem — ListElem,
root : List Elem)
Signature:
static sorts
N = N
static functions
+: NxN—-N = + :NxN-=N
dynamic functions
last : ListFElem
1: N
Start:

new c : List Flem with
head(e) =1
root == e
last ‘= e

Program:
if head(last) #n

new e : ListElem with
head(e) := head(last) + 1
last == e
tail(last) == e

Stop: head(last) =n

then

The second module uses the first. It creates a list of factorials, just like the example
in section 1.2. It operates by invoking the first module to create a list of increasing
natural numbers. Then it tranverses this list and multiplies each number with its
predecessor, which has already been multiplied.

3.6. Procedural modules 49

module faclist (sf n: N
ds ListElem
df head : ListElem — N,
tail : List Flem — ListElem,
root : ListElem)

Signature:

static sorts

N = N
static functions

* : NxN—-=N = - NxN-=N
dynamic functions

current : List Elem

Start:
(ListElem; head, tail, root) := count(n)
Program:
mitialize
if —de fined(current)
then current := root
step
if defined(current) A de fined(tail(current))

then head(tail(current)) := head(tail(current)) x head(current)
current := tail(current)

Stop: —defined(tail(current))

3.6.5 More general procedural modules

The proposal of procedural modules just presented can be generalized with respect
to the actual parameters that are allowed in module invocations. Procedural module
invocation are of the following form:

(C1,..,Cp; dv,..,dy) = proc(by,.. b)

According to subsection 3.6.2, the actual parameters dy,..,d, are required to be
dynamic function names. We will show by a schematic example that this requirement
can be relaxed, so that more general procedural module invocations are possible.

We will sketch a situation in which a procedural module proc is invoked by an
evolving algebra. Assume that the signature of the evolving algebra contains at least
the following declarations:

dynamic functions
DA

' B

:C

A= C
g:AxB—=C

—- 0 o Q

Further, suppose the procedural module proc has the following header:

module proc (df ' : A" — C', ¢ : C")

50 Chapter 3. Modularization of evolving algebras

In the body of the module, the following updates might occur:

F(z) =t

c:=s

where z, t and s are terms of appropriate sorts.
Given the signature and the procedural module header, the following invocation
of the module proc is possible:

(f,¢) := proc

When this invocation is executed, the two example updates inside the module will
have the effect of the following two updates outside the module:

f(z) =t

cC:=s

In the invocation just shown, both f and ¢ are dynamic function names. In the position
of the 0-ary dynamic function name ¢ of sort C', we could also allow an updatable term
of sort C. For instance, the updatable term f(a) is of appropriate type, and can be
used as follows:

(f, f(a)) := proc

When this invocation of proc is executed, the example updates will have the effect
outside the module of the following updates:

Thus, as actual parameters for 0-ary dynamic function parameters, we can allow not
only dynamic function names, but updatable terms in general.

Even more generality can be obtained. Let the partial applications of the binary
function g of type A x B — C' be denoted by g(a, -) and g(-,b) of types B — C and
A — C respectively. We can than formulate the following invocation of the procedural
module proc:

(g(-a b): f(a)) .= proc

When this invocation is executed, the example updates inside the module have the
same effect as the following updates outside the module:

(

g(z,b):=1t
I

‘J’:"
a):=s

Thus, inside the module, the partially application of ¢ is completed to a full application
by supplying the argument z.

So now we have three kinds of actual parameters: dynamic function names, updat-
able terms, and partially applied dynamic function names. These three possibilities
actually form a continuum. A dynamic function name ¢ can be viewed as a completely
unapplied function name: g(-,-). An updatable term can be viewed as a complete-
ly applied function name: g(a,b). In between these extremes, we can position the
partially applied dynamic function names g(a,-) and g(-,b).

3.7. Modules and consistency 51

3.7 Modules and consistency

The introduction of functional modules into the theory of evolving algebra has no con-
sequences for consistency. This is due to the fact that functional modules are purely
functional, and their invocations are terms, not updates. The extension of the theory
of evolving algebras with procedural modules, on the other hand, implies the intro-
duction of a new kind of update: the procedural module invocation. Consequently,
the definitions of consistency of update sets and compatibility of updates must be
extended to accommodate this new kind of update.

As was the case for consistency in the core theory, two basic strategies can be
adopted towards consistency for modules: a permissive strategy and a strict strategy.

The permissive strategy treats the updates encapsulated within the procedural
module in a way similar to the updates nested within an extend update. A procedural
module invocation can then be defined to be compatible with another update, if all its
encapsulated updates are compatible with this other update. As an example, recall
the procedural module proc of the previous section, and its encapsulated updates:

module proc (df ' : A" — C', ¢ : C")

Given this module definition, consider the following pair of updates:

(f,a) := proc
fly) ==

These updates are incompatible if y evaluates to the same value as z, while z and ¢
evaluate to different values.

The notion of consistency obtained through the permissive strategy rules out as
few update sets as possible. However, the consistency checking algorithm for this
notion is extremely laborious. It involves executing the module in its entirety in order
to establish which updates it performs. Since the body of the module can be an entire
evolving algebra, there is no limit to the amount of work that consistency checking
entails.

The alternative to the permissive strategy is the strict strategy. The strict strategy
does not look at the updates encapsulated by a module, but only at the dynamic
function names on the left-hand side of its invocation. A procedural module can then
be defined to be compatible with another update, if none of the dynamic function
names in the left-hand side of the invocation appear as subject in this update. So, for
instance, the updates in each of the following two pairs are incompatible:

(f,a) == proc (f,a) :== proc
a:=xzx f(y) =z

Strict consistency implies permissive consistency. If a dynamic function name f is not
contained in the left hand side of the invocation of proc, then the execution of proc
can not encapsulate an update which changes f. Therefore, the invocation can not be
incompatible with an update of which f is the subject.

So far we have only considered local function updates. We must now deal with
remove updates. Consider the following header of a procedural module proc’

52 Chapter 3. Modularization of evolving algebras

module proc¢’ (ds D/, df z : D)

The body of this module may contain remove updates and extend updates on D’.
Assume invocations of this procedural modules occur in the following pairs of updates:

D:a) := proc D:a) := proc
(Dja) :=p ; p
rem a: D flz) =y

According to the permissive strategy towards consistency of modules, these pairs may
or may not be compatible, depending on what updates are actually performed by
the procedural module invocations. To check consistency according to this strategy
involves running the encapsulated evolving algebras.

A strict stance towards consistency of modules can avoid running encapsulated e-
volving algebras, if it is combined with the permissive stance towards remove updates
in the core theory. According to this permissive stance, remove updates are always
compatible with each other and with other updates. As a consequence, the two ex-
ample update pairs just mentioned are always compatible, irrespective of the updates
performed by their bodies. Thus, with respect to remove updates, the strict strategy
towards module consistency is actually more permissive than the permissive strategy,
due to the presupposed permissiveness towards remove updates in the core theory.

The strict notion of consistency can also be extrapolated to general procedural
modules. For instance, the following updates are incompatible:

(9(1,-),a) := proc
9(l,z) =y

This incompatibility is due to the fact that the subject of the second update g(1, z)
is a completion of the partially applied function g(1,-), which appears as an actual
parameter in the first update.

The strict strategy make consistency checking easier, at the cost of disqualifying
update sets that would have been retained by the permissive strategy. Adoption of the
first strategy makes it necessary to execute the module invocations in order to check
consistency. After all, the bodies of modules are complete evolving algebras, which
makes it rather laborious to assess which local function updates will be performed by
it.

3.8 Modularized evolving algebras in the literature

3.8.1 Modularization in leanFA

In [BP95] Beckert and Posegga describe an evolving algebra tool called lean FA. This
tool accepts an evolving algebra language which includes modules. The non-modular
core of this evolving algebra language is considerably less rich than the core theory
described in chapter 2. In particular, 1t does not support dynamic sorts, and has
no remove or extend updates. Also, static and dynamic functions are not strictly
distinguished. The modules supported by leanEA’s evolving algebra language are
functional modules. These functional modules are very similar to the functional mod-
ules described in section 3.5. Three differences must be noted. Firstly, the parameters
of lean FA’s functional modules are value parameters instead of constant parameters.
Secondly, the return values of lean FA’s modules are not single values, but lists of val-
ues. Thirdly, the functional modules are not invoked directly in an evolving algebra,

3.9. Modules and parallelism 53

but by mediation of a Prolog predicate. There is no concept of procedural modules in

leanF'A.

3.8.2 Modularization in Diesen

In [Die95b] Diesen presents a modularization of evolving algebras which deviates rad-
ically from the modularization proposed in this chapter. Diesen’s modules are not
parameterized abstractions, but rather collections of rules operating in a single name
space. This name space is partially visible to each module. Information is not passed
between modules through parameters, but by updating and inspecting shared names.
The modules pass control to each other by jumps. Modules that return control to the
module that gave them control initially are called sub-routines. Modules that pass
control on to other modules are called co-routines.

3.9 Modules and parallelism

3.9.1 Terminological remarks

Before we will embark on a discussion of parallelism in the theory of evolving algebras,
it is necessary to clarify the terminology that will be used. The distinctions between
the terms ‘parallel’, ‘concurrent’, ‘interleaved’, and ‘distributed’ as used in this section
will be explained.

In common usage, the terms ‘parallel” and ‘distributed’ do not have neatly de-
fined meanings. Both terms denote processes which consist of subprocesses that are
executed, or could be executed, simultaneously. Commonly, the term ‘distributed’ is
used to indicate that the subprocesses are relatively independent, and are executed
on fairly autonomous physical machines. Occasionally, the term ‘parallel’ is used in
contrast with ‘distributed’. More often, parallel processes are considered to subsume
distributed processes.

In this chapter we will use the terms ‘parallel’ and ‘distributed’ not in their collo-
quial vague meanings, but to make a strict semantical distinction. We will define the
terms in turn.

Parallel processes

In the case of a parallel process, the subprocesses are ordered in a tree-shaped hier-
archy. A parent-child relationship exists between processes at different levels in the
hierarchy. Siblings do not communicate with each other. They are not dependent on
each other’s results. No synchronization between siblings is needed. All communica-
tion takes place between parents and children. Each parent depends on the results of
its child processes.

Distributed processes

In the case of distributed processes, a hierarchy is neither presupposed, nor precluded.
The subprocesses are dependent on each other’s results. They communicate with each
other by passing messages, or by writing data into a shared memory space, which can
be inspected by one or more of the others.

54 Chapter 3. Modularization of evolving algebras

Concurrent and interleaved computations

The subprocesses of a parallel of distributed proces can be executed at the same
time on different processors, or at different times on the same processor. In the
former case, the subprocesses are said to be executed concurrently, in the latter case
their execution is said to be interleaved. Thus, the distinction between interleaved
and concurrent computations concerns the allocation of processor time. We are not
concerned not with resource allocation in the present discussion. As a consequence,
we will not discuss issues of concurrency and interleaving.

3.9.2 Parallelism in the core theory of evolving algebras

Parallelism 1s present in the core theory of evolving algebras at several places. These
occurrences of parallelism fall into two general categories: parallel evaluation, and
parallel execution. We will discuss the occurrences of parallelism in turn.

Parallel evaluation of expressions

There are two kinds of expressions in evolving algebras: terms and conditions. In
general, terms have the following form:

Flt, .. tn)

The evaluation of this term demands the evaluation of its subterms ¢, ... ,¢,. These

subterms can be evaluated in parallel. Hence, when the evaluation of the complete

term is the parent process, the evaluation of its subterms are the child processes.
Conditions may have one of the following general forms:

c1D...Dey
1 =19

where oplus denotes a binary logical operation. The evaluation of a condition of the
first form demands the evaluation of its subconditions ¢y,c,. These subconditions
can be evaluated in parallel, by child processes of the process that evaluates the entire
condition. Likewise, the evaluation of #; and #3 can be performed by parallel child
processes of the evaluation of a condition of the second form.

So, in general, when the evaluation of an expression requires the evaluation of
subexpressions, these subexpressions can be evaluated in parallel.

Parallel evaluation of left and right hand sides

Local function updates have the following general form:

flty, .. ty) =t

The execution of such an update requires the evaluation of the right hand side ¢,
as well as the evaluation of the subterms ¢q,...,¢, of the updatable terms at the left
hand side. All these evaluations can be performed in parallel. In this case, the parallel
evaluation processes are child processes of the execution of the update.

3.9. Modules and parallelism 55

Parallel execution of updates

As was mentioned in earlier chapters (e.g. section 2.7.1), evolving algebras support
parallelism at the update level. The updates in the update set of a transition rule
are executed in parallel. If any of these updates contain nested updates, these are
executed in parallel as well. Consider, for instance, the following set of updates:

a:=1

new z : D with
r:=2
f(z):=3

f(b) = g(475)

All four local function updates that occur nested or not nested in this update set,
are executed 1n parallel. The parallel processes that perform these individual updates
operate upon a single name space. The consistency condition imposed on update sets
ensures that no conflicts can arise due to this sharing. Each update in a consistent
update set affects a location in the shared name space, which is distinct from the
locations affected by the other updates.

Parallel evaluation of guards

An evolving algebra program can contain any finite number of rules. Each of these
rules is guarded by a condition.

if C1

then U,

if ¢,

then U,

To determine which of the available rules are applicable in a given state, the conditions
c1,..,c, must be evaluated. These evaluations can take place in parallel, as child
processes of the process which determines the applicable rules in a program.

So, in the core theory of evolving algebras, two general kinds of parallelism occurs:
parallel execution of updates, and parallel evaluation of expressions. The latter kind
occurs in three situations: evaluation of complex terms or conditions, evaluation of left
and right hand sides of local function updates, and evaluation of guards to determine
sets of applicable transition rules.

3.9.3 Modules and parallelism

In the core theory, conditions, terms and updates are of limited complexity. More
specifically, they are always defined in terms of other conditions, terms and updates,
never in terms of complete evolving algebras. As a consequence, parallel evaluation of
expressions and parallel execution of updates involve child processes of limited size.

In the modularized theory of evolving algebras, the limit on the complexity of
conditions, terms and updates is lifted. They can be defined in terms of functional
and procedural modules, which both encapsulate complete evolving algebras. Conse-
quently, the child processes involved in parallel evaluation of expressions and parallel
execution of updates are computations of full evolving algebra runs.

56 Chapter 3. Modularization of evolving algebras

Modules and parallel update execution

Procedural modules are abstractions over updates. Correspondingly, procedural mod-
ule invocations are updates. Suppose the following updates occur in an update set:

(f,a) := proc
fly) ==

When this update set is executed, the evolving algebra encapsulated in proc will run
in parallel with the execution of the local function update.
In an update set, more than one procedural update invocation may occur.

(f,a) := proc
(g9,b) := proc

When these updates are executed, two instantiation of the evolving algebras encapsu-
lated by proc will run in parallel.

The consistency update imposed on update sets will ensure that evolving algebras
running in parallel do not interfere with each other.

Modules and parallel expression evaluation

Functional modules are abstractions over terms. Hence, functional module invocations
are terms. Assume func is the name of a functional module, and consider the following
complex term:
f(a, func(b))

The evaluation of this complex term involves the parallel evaluation of its subterms.
Therefore, the evolving algebra encapsulated by func will run in parallel with the
evaluation of a.

Several subterms of a complex term can be functional module invocations. For
example:

f(fune(a), fune(b))

When this complex term is evaluated, two instantiations of the evolving algebra en-
capsulated by func will run in parallel.

Similar situations occur when functional module invocations appear in transition
rule guards or in left and right hand sides of local function updates. The purely func-
tional nature of functional modules insures that evolving algebras running in parallel
will never interfere with each other.

3.9.4 Parallel and distributed evolving algebras in the litera-
ture

Massive parallelism

Gurevich [Gur95] has shown how the introduction of variable declarations into evolving
algebra programs makes the specification of massive parallel computational processes
possible. For instance, an update? of the following form:

var v ranges over s

with U

3 Gurevich does not strictly separate updates from rules. Consequently, his variable declarations
are rules with nested rule sets, in stead of updates with nested update sets.

3.10. Modules and structured evolving algebra design a7

specifies that the updates in update set U, in which the variable v may occur free, be
executed for every element in sort s. Hence, variable declarations serve as universal
quantors over the elements of a sort. If the sort s has an infinite number of elements,
the variable declaration accomplishes unbounded parallelism. However, it is advisable
to restrict s to dynamic sorts, which have finite numbers of elements.

Note that a variable declaration can be used to form consistent update sets only
if the union of the instantiation of U for every element in s is a consistent update set.
Consider the following variable declaration:

var v ranges over s
with ¢ := v

This variable declaration leads to inconsistency, unless s contains no more than one
element.

Gurevich’ massive parallelism is compatible with the modularization of evolving
algebras. When the update set U contains functional or procedural modules, massive
number of evolving algebras will run in parallel.

Distributed evolving algebras

synchronization and communication protocols are explicitly needed This section has
been concerned with parallel processes; not with distributed processes. Several pro-
posals have been made to introduce distributedness into the evolving algebra theory.
The most comprehensive proposal is given by Gurevich in [Gur95].

Gurevich introduces distributed evolving algebras by having not just a single pro-
gram, but a finite collection of programs. If we imagine a program being executed by
an agent, this generalization amounts to the introduction of multiple agents in stead
of a single agent. The vocabularies of the various programs are partially overlapping.
The agents identify themselves using a special zero-argument function called self.
To allow cooperative actions, the agents are organized into feams, which are agents
themselves. Multi-agent evolving algebras have been used to model communication
protocols for distributed systems [Gur95].

3.10 Modules and structured evolving algebra de-
sign

The introduction of modules into the theory of evolving algebras makes adequate
treatment of large evolving algebras possible. Modules allow computations to be
subdivided into relatively independent subcomputations. These subcomputations can
be specified in isolation in separate modules. Using such modules as building blocks,
well-structured evolving algebras can be formulated.

Large evolving algebras with modular structures are easier to formulate, under-
stand and adapt. Furthermore, testing of large evolving algebras and reasoning about
them is facilitated by a modular structure. In particular, the modularization of evolv-
ing algebras makes it possible to adopt a structural design methodology for evolving
algebras, and to construct modular proofs about evolving algebras.

58 Chapter 3. Modularization of evolving algebras

3.10.1 Modular evolving algebra design

A top-down design methodology can be applied to construct modular evolving alge-
bras. According to this methodology, one starts by formulating a top-level module
which reflects the global functionality. Subsequently, detail can be added to the spec-
ification by constructing the specifications of the modules that are invoked by the
top-level module. This process can be repeated until the lowest level of modules has
been reached.

Modularization enables re-use of parts of evolving algebra specifications. The same
module can be used in different evolving algebras.

Modularization makes modifying evolving algebra specifications easier. Specifica-
tions need not be modified as a whole, but changes can be made locally inside modules.
Changes inside modules are hidden within the module. Hence, no other parts of the
evolving algebra need to be changed.

3.10.2 Modular evolving algebra proofs

The modular structure of an evolving algebra can be exploited when proofs about
them are constructed. For instance, the proof that a particular modular evolving
algebra terminates, can be constructed from the termination proofs of its constituent
modules. In general, proofs about modules can be utilized as premisses for proofs
about evolving algebras that invoke them.

When modules are re-used, the proofs that have been constructed about them can
be re-used as well. Local modifications of evolving algebras result in local modifications
of proofs.

Correctness proofs for evolving algebra modules take different forms for functional
and procedural modules. To prove a functional module correct, one must prove that
it implements the (mathematical) function it is required to implement. To prove a
procedural module correct, one must prove that it implements a certain state trans-
formation. It must be proven that, assuming a given pre-condition obtains before the
procedural module invocation takes effect, a certain post-condition will be satisfied
after the module has been executed.

Inductively confirming hypotheses about evolving algebras, i.e. testing, benefits
from modularization as well as deductive proof construction. Each module can be
tested and corrected in isolation before the evolving algebra is tested in its entirety.

In this chapter, an extension of the core theory of evolving algebras with functional and
procedural modules has been formulated. Also, the benefits of modularization with
respect to structured evolving algebra design and parallelism have been described. In
the upcoming chapter, the use of modules will be demonstrated by example.

Chapter 4

A modular evolving algebra
for lambda reduction

4.1 Lambda reduction 0oL 59
4.2 Graph representation of lambda expressions 61
4.3 Modular structure of the evolving algebra 62
4.4 Toplevel module o 62
4.5 Module for finding the redex 0oL 64
4.6 Module for reducing theredex 66
4.7 Module for constructing the reduct 68

In the previous chapter, the theory of evolving algebras was enhanced with modules.
In this chapter a modular evolving algebra which models graph reduction of lambda
expressions, is presented to illustrate the use of modules. In the first section, a brief
survey of lambda reduction in general will be given. In the second section, the graph
representation of lambda expressions used by our evolving algebra, is explained. In
the sections 4.3 to 4.7 the evolving algebra itself is piecewise specified and discussed.

4.1 Lambda reduction

In this section a condensed account of lambda reduction is given to serve as a basis
for the subsequent sections. A more detailed account of the lambda calculus can be
found in Barendregt [Bar84].

Lambda reduction is the process of rewriting lambda expressions to simpler ones. We
will only consider expressions in the pure lambda calculus, which have the following
syntax:

(ezp) — (var)[A(var).(ezp)|(ezp){ecap)|({czp))
(var) — zly|z| ...

99

60 Chapter 4. A modular evolving algebra for lambda reduction

For example, the following are lambda expressions:

Ar. Ay.xyy
Az Ay.y)(Az.z2)(Az.22))

A lambda expression of the following form:
(A\V.B)A

where B and A are arbitrary lambda expressions and V is a variable, is called a
reducible expression, or redez. B is called the body and A is called the argument of
the redex.

Any lambda expression which contains a redex as a subexpression can be reduced
by replacing this redex by its body B in which all occurrences of its variable V' have
been replaced by its argument A'. This prescription for reduction is called the S-rule.
It can be schematically rendered as follows:

..(A\VB)A...—5...B[A/V]...
For instance, we have the following g-reductions:

Az Ay y)(Az.z2)(Az.22)) —5 (Az.Ay.y)((Az.22)(Az.22))
Az yy)(Az.zz)(Az.22)) —5 Ay.y

The underlining in the expressions on the left hand side indicate which redex is being
reduced.

When reductions are carried out in succession, reduction sequences are constructed.
A reduction sequence ends when an expression is produced which contains no more
redexes. This last expression is said to be in normal form. Alternatively, one may
decide to reduce only until an expression is produced which is in weak head-normal
form. This is the case if the expression satisfies the following conditions:

e the expression is a variable, or
e the expression is of the form AV.E| or
e the expression is of the form ¢z E1 E5 ... E,.

If one pictures lambda expressions as trees, one can concisely say that an expression is
in weak head-normal form if its left spine does not contain any redexes. Some lambda
expressions can be reduced to an expression in weak head-normal form, but not to one
in ordinary normal form. Some expressions can be reduced to neither. In this latter
case, the reduction sequence is non-terminating. In this paper we will limit ourselves
to reductions to weak head-normal form. For sake of brevity we will sometimes drop
the qualification “weak head”, but ordinary normal form is never intended.

Since a lambda expression may contain more than one redex, the reduction steps
may involve choosing between possible redexes. These choices can be made according
to a particular reduction strategy. Two strategies are of particular interest:

Applicative-order reduction At each step, the leftmost innermost redex is chosen.
A redex is called innermost if none of its subexpressions are redexes. A redex is
called leftmost if it occurs to the left of all other redexes.

TWe will assume all variables to be uniquely chosen, to rule out the possibility of name clashes.

4.2. Graph representation of lambda expressions 61

Normal-order reduction At each step, the leftmost outermost redex is chosen. A
redex is called outermost if 1t is not a subexpression of some other redex. The
qualification “outermost” is actually redundant. All leftmost outermost redexes
are leftmost redexes and wice versa. Consequently, normal-order reduction is
sometimes called leftmost reduction [Bar84, 180].

Whether the reduction sequence that is constructed terminates or not may depend on
which reduction strategy is adopted. The set of lambda expressions whose reduction
terminates is more extensive for normal-order reduction than for applicative-order
reduction. In fact, normal-order reduction is normalizing, i.e. it always produces a
normal form if there is one?, but applicative-order reduction is not.

In this section, a brief survey of lambda reduction in general was given. The evolving
algebra to be presented in sections 4.3 to 4.7 will be limited to normal-order reduction
to weak head-normal form. Also, the evolving algebra will presuppose a parser and
operate on graph representations of lambda expressions. The next section explains
the graph representation to be used.

4.2 Graph representation of lambda expressions

In the evolving algebra to be presented in the next section, lambda expressions will be
represented by binary graphs. The nodes of these graphs are elements of a dynamic
sort Node. To these nodes, four dynamic functions are applicable: nodetype, left,
right, and name. For each node n the value of nodetype(n) is either lambda, apply or
variable, indicating whether it represents a lambda expression, an apply expression or
a variable. If the value of nodetype(n) is lambda or apply, then the values of le ft(n)
and right(n) are the nodes which represent the left and right subexpressions of the
expression it represents. If the value of nodetype(n) is variable, then left(n), and
right(n) are undefined, and the value of name(n) is the name of the variable which is
represented by n.

This graph representation of lambda expressions conforms to the syntax diagram
of section 4.1, except for the parentheses. These are not present in the graph repre-
sentation, because no ambiguity of scope can occur.

The graph representation will differ from the syntax diagram on a second account
because we will allow sharing. A node is said to be shared if it is a child of more
than one parent. When a node is shared the subexpression it represents has several
occurrences which are identical to each other.

The evolving algebra for lambda reduction will need to traverse the graphs that
represent lambda expressions. Traversal involves on the one hand descending the
graph, by switching from a node to one of its children, and on the other hand back-
tracking, which consists in switching from a node to its parent. To make backtracking
possible, a fifth dynamic function on nodes is needed, called parent. At each descend-
ing step from a node n to its child node m, the value of parent(m) will be set to n.
This value is again retrieved to backtrack from m in a later stage. For the root node
of a graph, the value of parent is always undefined.

In the next section, the evolving algebra for graph reduction of lambda expressions will
be presented, which makes use of the graph representation explained in this section.

2 A proof that normal-order reduction is normalizing can be found in Barendregt [Bar84, 326ff].

62 Chapter 4. A modular evolving algebra for lambda reduction

(lambda-reduction)

DN
(" find_redex) (reducel_redel‘)

(construct_reduct)

Figure 4.1: Modular structure.

4.3 Modular structure of the evolving algebra

In this section, a modular evolving algebra for normal-order graph reduction of lambda
expressions to weak head-normal form will be given. In [FH88] an informal description
of such an algorithm can be found.

In outline, the algorithm operates as follows. Starting from an initial lambda ex-
pression, a reduction sequence is produced by performing single G-reductions in suc-
cession, until an expression in weak head-normal form is obtained. Each g-reduction
consists in finding the leftmost outermost redex and replacing this redex by its body,
in which all occurrences of its variable have been replaced by its argument.

We have designed a modular evolving algebra for this algorithm, which consists
of four modules. These modules are arranged in a hierarchy. The top level module
is called lambda-reduction. The immediate subordinates of this top level module
are the modules find-redex and reduce-redex. These modules perform the subtasks
of finding a redex and reducing a redex to its reduct respectively. The top level
module lambda_reduction invokes these modules in alternation, until no more redexes
can be found. The second subordinate module, reduce_redex delegates the task of
constructing a redex to a further subordinate called construct_reduct. After invoking
this module, the module reduce-redex replaces the redex by its reduct. This module
structure is pictured in figure 4.1.

In the following sections, the four modules of our evolving algebra will be specified
and discussed. We will adopt a top down order of presentation.

4.4 Top level module

The top level module is a procedural module, as are all modules in our evolving algebra.
Through its parameters it receives a graph representation of a lambda expression. The
root of this graph is pointed at by the 0-ary static function parameter ezpr. Thus,
the header of the top level module is as follows:

module lambda_reduction (ds Node
df expr : Node
type : Node — NodeType
name : Node — Variable
left : Node — Node
right : Node — Node)

The module operates by alternating between two modes, called find-redex and
reduce_redex. In the first mode, the redex of an expression is determined by calling

4.4. Top level module 63

find-redex reduce-redex done ‘

Figure 4.2: Mode structure of the module lambda_reduction.

the subordinate module find-redex. (We have given the module and the mode in
which it is invoked the same name.) In the second mode, the redex which has been
found 1s reduced by invoking the module with the name reduce_redex. If no more
redexes can be found, a third mode is entered, called done. The mode structure of
the top level module is depicted in figure 4.2. These three modes are elements of the
static sort Mode. The dynamic function mode is used to keep track of the current
mode.

static sorts

Mode = (find-redex,reduce_redex,done)
dynamic functions

mode : Mode

In the start update set, the dynamic function mode is initialize as find-redex.

Start:
mode := find-redex

In the final state of the evolving algebra, the value of mode should be done. This is
expressed by the stop condition:

Stop: mode = done

We will specify the guards of the rules of the module in such a way that the stop
condition is guaranteed to be satisfied when no more transition rules are applicable.

The program of the module contains three rules. The names of these rules are
indicative of the mode in which they are applicable:
Program:
find-redex
if mode = find_redex
then (Node; expr, redex, found, le ft, type) := find-redex
mode := reduce_redex
reduce_redezr_a
if mode = reduce_redex A found
then (Node; redex, type, le ft, right, name) := reduce-redex
mode := find-redex
reduce_redex_b
if mode = reduce_redex A = found
then mode := done

64 Chapter 4. A modular evolving algebra for lambda reduction

The first rule is applicable in the mode find_redex. When this rule is fired, the module
find_redex 1s invoked. This module updates two 0-ary functions of the following types:

dynamic functions
redex : Node
found : Boolean

The dynamic function redex is updated by the module find-redex to point to the
root of the leftmost outermost redex of the expression pointed at by expr. If no redex
can be found, found will be updated to false, otherwise to true. In parallel, the
mode will be set to reduce_redez.

In the mode reduce-redex either one of two rules can be applicable. The first rule
is applicable if a redex has been found. The update set of this rule invokes the module
reduce-reduct to reduce the redex. This subordinate module operates on the subtree
pointed at by redex. In parallel the mode is set to find-redex again, to continue the
find-reduce cycle in the next transition.

If no redex has been found in the mode find-redex, the third rule will fire in
mode reduce_redex. Its effect is to end the find-reduce cycle by updating mode to
done. In the mode done, no transition rules are applicable, and the top level module
terminates.

For completeness, we present the complete signature of body of the top level mod-
ule:

Signature:
static sorts
Mode = (find-redex,reduce.redex, done)
NodeType = (lambda, apply, variable)
dynamic functions

redex : Node
found : Boolean
mode : Mode

We will now turn to the subordinate modules.

4.5 Module for finding the redex

The task of the subordinate module find-redez is to find the leftmost outermost redex
of a lambda expression. It receives the graph representation of the lambda expression
to be searched through its parameters Node, left, and type. The dynamic function
parameters redex is to be updated by the module to the root of the redex that is
found. The dynamic function parameter found is used to flag whether the search for
a redex was successful. Thus, the header of the module is as follows:

module find-redex (ds Node
df expr : Node
redex : Node
found : Boolean
left : Node — Node
type : Node — NodeType)

If no redex is found by the module, then the expression is in weak head-normal form.

4.5. Module for finding the redex 65

As in the case of the top-level module, the operation of the module find-redex
is guided by modes. Only two modes are distinguished: not-done and done. The
signature therefore contains the following declarations:

static sorts

Mode = (not-done,done)
dynamic functions

mode : Mode

Note that these names are local. They should not be confused with the same names
used in the top level module and the other modules. In the start update set, the mode
is updated to not_done, and in the final states, mode should equal done.

Stop: mode = done

The guards of the transitions rule to be presented shortly, guarantee the stop condition
to be true in all final states.

The module find_redex operates by descending the spine of the graph pointed at
by expr in a step-wise fashion. When a redex is found along this spine, the mode
done is entered, redez is updated to point to this redex, and the flag found is set to
true. If the end of the spine is reached without finding a redex, then the mode done is
entered and the flag found is set to false. For the step-wise descent along the spine,
a pointer called current is used.

dynamic functions
current . Node

In the start update set, this pointer is set to the root of the graph: expr. Hence, the
update set of the module performs two updates:

Start:

current := expr
mode := not_done

The program of the module find-redez contains four rules:

Program:
if mode = not.done A type(current) = apply A type(left(current)) = lambda
then redex := current

found := true
mode := done

if mode = not.done A type(current) = apply A type(left(current)) = apply
then current := left(current)

if mode = not.done A type(current) = apply A type(left(current)) = variable
then mode := done

found := false

if mode = not.done A type(current) # apply
then mode := done

found := false

66 Chapter 4. A modular evolving algebra for lambda reduction

We have not given these rules names. All these rules are applicable only if the mode is
not-done. The first rule fires when the current node pointed at by current is a redex.
Such a redex is recognized by the fact that its root is an apply expression, which has
a lambda expression as its first argument.

The second rule is applicable if no redex is pointed at by current, while the end
of the spine has not yet been reached. The update set of this rule moves the pointer
current one step further down the spine.

The last two rule are applicable, when the end of the spine is reached without
finding a redex. In this case the expression is already in weak head-normal form. The
update sets of these rules set the flag found to false.

The complete signature of this module is as follows:

Signature:

static sorts
Mode = (not-done, done)
NodeType = (lambda, apply, variable)
dynamic sorts
Node
static functions
lambda : NodeType = lambda
apply : NodeType = apply
variable : NodeType = wvariable
dynamic functions
mode : Mode
current : Node

We will now turn two the next subordinate module of lambda-reduction, which is
invoked when a redex has been found by find-redex.

4.6 Module for reducing the redex

The task of the module reduce-redex 1s to replace the redex of an expression by its
reduct. This task is performed in two steps. First, the subordinate module construct-
reduct is invoked to construct the reduct for the given redex. Second, the redex is
‘overwritten’ by the reduct, i.e. the node pointed at by redex is made the root of the
graph which represents the reduct.

The redex pointer is transferred to the module reduce_-redex through a static
function parameter. The graph representation of the redex pointed at is received
through the dynamic parameters Node, type, le ft, right and name. The header is as
follows:

module reduce_redex (ds Node
df redex : Node
type : Node — N odeT'ype
left : Node — Node
right : Node — Node
name : Node — Variable)

The module reduce-redex operates in three modes: construct-reduct, overwrite.
redex, and done.

4.6. Module for reducing the redex 67

static sorts

Mode = (construct-reduct,overwrite-redex,done)
dynamic functions

mode : Mode

These modes are entered consecutively. There is no iteration within a mode, nor alter-
nation between modes. The module starts in mode construct-reduct and terminates
in mode done.

Start:
mode := construct-reduct

Stop: mode = done
The program consists of two rules:

Program:
construct_reduct
if mode = construct_reduct
then (Node; redex, type, le ft, right, name, reduct) := construct-reduct
mode = overwrite-redex

overwrite_redez

if mode = overwrite_-redex

then type(redex) := type(reduct)
left(redex) = left(reduct)
right(redez) := right(reduct)
name(redex) := name(reduct)
rem reduct : Node
mode := done

In the first mode, the first rule is applicable. This rule invokes construct-reduct, and
switches to mode overwrite_redex. As a result, the pointer reduct will point at the
root of the reduct of redex. The second rule is applicable in the second mode. The
update set of this rule redirects all pointers emanating from the redex root-node to the
values of the corresponding pointers of the reduct root-node. In parallel, the reduct
root-node, which has become superfluous, is removed.

In full, the signature of the module reduce_redex is as follows:

Signature:
static sorts
Mode = (construct-reduct, overwrite_redex, done)
NodeType = (lambda, apply, variable)
dynamic sorts
Node
static functions
lambda : NodeType = lambda
apply : NodeType = apply
variable : NodeType = wvariable
dynamic functions
mode : Mode
reduct : Node

68 Chapter 4. A modular evolving algebra for lambda reduction

In the next section we will present the last of the four modules that constitute the
modular evolving algebra for lambda reduction.

4.7 Module for constructing the reduct

The task of the module construct_reduct is to construct the graph representing the
reduct of a given redex. The graph structures are transferred into and outof the
module through the dynamic parameters Node, type, left, right, and name. The
pointers redex and reduct are used to point to the root node of the redex and the
reduct, respectively. The header of construct-reduct is as follows:

module construct-reduct (ds Node
df redex : Node
type : Node — NodeType
left : Node — Node
right : Node — Node
name : Node — Variable
reduct : Node)

The mode structure of construct-reduct is similar to the mode structure of find-
redex. Two states are distinguished: not_done and done.

static sorts

Mode = (not-done,done)
dynamic functions

mode : Mode

In the first mode, the graph which represents the body of the redex is traversed in
depth-first fashion. During this traversal, the body of the redex is copied. At the
same time, the pointers in the copy to variables bound by the lambda of the redex are
redirected to the argument of the redex. When the traversal of the tree is completed,
the mode done is entered.

During the traversal, three auxiliary pointers are used:

dynamic functions
reduct : Node
body : Node
parent : Node — Node

The pointers reduct and body are used to point at the current node in the reduct graph
and the current node in the graph representing the body of the redex, respectively.
These pointers move through their respective graphs in a synchronized fashion, i.e.
they always move simultaneously in the same direction. The parent pointer is used to
enable backtacking. At each move down the graph, a parent pointer is installed from
the child node that becomes current, to the parent node which ceases to be current.
When backtracking is required, the parent pointer is inspected to regain the parent
node of the current node.
In the start update set, several updates are performed to initialize the module.

4.7. Module for constructing the reduct 69

Start:
body := right(left(redex))
arg := right(redex)
var := name(le ft(left(redex)))
new n : Node with
reduct :==n
type(n) := type(right(left(redex)))
mode := not_done

The first three of these updates create temporary pointers to the body, the argument
and the binding variable of the redex, respectively. The extend update creates the
root node of the reduct graph, and initializes its type. The last update initializes the
mode as not_done, to start the copying of the body.

During the traversal of the graphs, several situations can occur. The program
contains a rule to handle each situation. We will discuss these rules in groups. The
three rule in the first are applicable in situations where an occurence of the variable
bound by the redex is encountered. In these situations the following condition is
satisfied:

type(body) = variable A name(body) = var

In each of these three situations, the argument arg of the redex must be substituted
somehow for the variable. The situations differ in the relation of the current reduct-
node to its parent. In the first situation, the current-reduct node is the left child of
its parent, in the second situation it is the right child, and in the third situation, the
current node does not have a parent at all. The rules fore these situations are:

if mode = not_-done Atype(body) = variable A name(body) = var A
de fined(parent(reduct)) A left(parent(reduct)) = reduct
then le ft(parent(reduct)) := arg
reduct := parent(reduct)
body := parent(body)

if mode = not-done Atype(body) = variable A name(body) = var A
de fined(parent(reduct)) A right(parent(reduct)) = reduct
then right(parent(reduct)) := arg
reduct := parent(reduct)
body := parent(body)

if mode = not_-done Atype(body) = variable A name(body) = var A
—de fined(parent(reduct))
then reduct .= arg
mode := done

In the first two situations, backtracking occurs, and the argument becomes the left
or right child of the new current reduct node. In the third situation, the argument
becomes the new reduct, and the traversal is complete.

In the second group of possible situations, a variable is encountered which 1s dif-
ferent from the variable bound by the redex. In other words, the following condition
is satisfied:

type(body) = variable A name(body) # var

70 Chapter 4. A modular evolving algebra for lambda reduction

In this case, no substitution needs to be performed. Depending on whether the current
node has a parent, one of the following two rules is applicable:

if mode = not-done Atype(body) = variable A name(body) # var A
de fined(parent(reduct))
then name(reduct) := name(body)
reduct := parent(reduct)
body := parent(body)

if mode = not_-done Atype(body) = variable A name(body) # var A
—de fined(parent(reduct))
then name(reduct) := name(body)
mode := done

The update set of the first of these rules copies the variable from the body to the
reduct, and backtracks. The update set of the second rule performs the same copy
operation, but switches to mode done in stead of backtracking.

In the last group of four possible situations, a node is encountered of a different
type than variable. Thus, the following condition is satisfied:

type(body) # variable

If the left child of the current node has not been visited yet, the following rule applies:

if mode = not_-done A type(body) # variable A
—de fined(le ft(reduct))
then body := le ft(body)
parent(le ft(body)) := body
new n : N with
left(reduct) :=n
reduct :=n
parent(n) := reduct
type(n) := type(left(body))

The update set of this rule creates a new node in the reduct-graph. This new node
becomes the left child of the current node. Simultaneously, the reduct pointer and the
body pointer descend to their left children, and parent pointers are installed to enable
backtracking in a later stage. Also, the type of the left child of the current body node
is copied into the new reduct node.

If the left child of the current node has been visited, but the right node has not,
the following rule is triggered:

if mode = not_-done A type(body) # variable A
de fined(le ft(reduct)) A —defined(right(reduct))
then body := right(body)
parent(right(body)) := body
new n : Node with
right(reduct) := n
reduct :=n
parent(n) := reduct

type(n) := type(right(body))

4.7. Module for constructing the reduct 71

The update set of this rule operates on the right children of the reduct and body graph
in the same way as the previous rule operated on the left children.

If both children of the current node have been visited, one of the following rules is
applicable:

if mode = not_-done Atype(body) # variable A de fined(left(reduct)) A
de fined(right(reduct)) A de fined(parent(reduct))
then reduct := parent(reduct)
body := parent(body)

if mode = not_-done Atype(body) # variable A de fined(left(reduct)) A
de fined(right(reduct)) A —de fined(parent(reduct))
then mode := done

The first of these rule is fired when the current node has a parent. Its update set
backtracks. The second rule triggers when no parent exists, and the traversal is
complete. Its update set switches to the mode done.

This completes the program of the module construct_reduct. The signature of this
module is as follows:

Signature:

static sorts

Mode = (not-done,done)

NodeType = (lambda, apply, variable)
static functions

lambda : NodeType = lambda

apply : NodeType = apply

variable : NodeType = wvariable
dynamic functions

body : Node

arg : Node

var : Variable

mode : Mode

parent : Node — Node

Now all four modules of our modular evolving algebra for lambda reduction have been
presented, we will briefly review its operation. The top level module lambda-reduction
performs a find-reduce cycle until the graph which represents a lambda expression has
been brought into weak head-normal form. In the first step of the find-reduce cycle,
the subordinate module find-redex is invoked. This module descends the left spine of
the graph searching for a redex. The first redex encountered is the leftmost-outermost
redex of the expression. In the second step of the find-reduce cycle, the module
reduce_redex is invoked. This module in its turn invokes the module construct_reduct
to construct the reduct of the redex that was found. Then, the module reduce-redex
overwrites the root node of the redex with the root node of its redex. In this fashion,
one reduction step is completed by each find-reduce cycle. When no redex is found in
the first step, reductions sequence ends with an expression in weak head-normal form,
and the modular evolving algebra is finished.

72

Chapter 4. A modular evolving algebra for lambda reduction

Part 11

Automated support for
evolving algebras

73

The formulation of specific evolving algebras is not an algorithmic task, but a creative
process. Still, many subtasks of the evolving algebra designer could be supported by
appropriate algorithmic tools. The development of such tools is one of the aspects of
the evolving algebra programme.

The second part of this report is dedicated to automated support of evolving
algebras. In particular, this part presents the evolving algebra tool EvADE. Two
groups of three chapters can be distinguished within this part. The first three chapters
deal with EvADE and other evolving algebra tools from the standpoint of a user. The
second set of three chapters jointly describe the implementation of EVADE.

75

Chapter 5

Inventory of evolving algebra
support

5.1 Evolving algebra compilers 76
5.2 Evolving algebra run analyzers 77
5.3 Interactive theorem provers 77
5.4 Evolving algebra transformers 78

In this chapter we will investigate the possibilities and actualities of automated evolv-
ing algebra support. We will make a categorization of conceivable evolving algebra
tools, which comprises the following categories:

e Evolving algebra compilers or interpreters.

e Evolving algebra run analyzers.

e Interactive theorem provers for evolving algebras.
e Evolving algebra transformers.

This categorization is not presumed to be exhaustive. In the following sections, each
category will be briefly characterized, and existing tools that fall into the categories
will be listed.

5.1 Evolving algebra compilers

The language of evolving algebras can be used as a programming language as well
as a specification language (see section 1.3.2). Hence, in order to be able to run
evolving algebras on concrete machines, a compiler (or interpreter) is needed. The
task of evolving algebra compilers is to transform an evolving algebra specification to
executable code.

Two evolving algebra interpreters have been developed.

76

5.2. Evolving algebra run analyzers 77

e The DASL-ALMA compiler. In [Kap93] Kappel defines an evolving algebra
specification language, called DASL, and designs an abstract machine, called
ALMA, which is a Prolog program. A compiler has been implemented in Pro-
log that compiles DASL-specifications to ALM A-instructions. Hence, the com-
bination of this DASL-to-ALMA compiler and the ALMA machine forms a
DASL-to-Prolog compiler. In the sequel, we will in short refer to this compiler
as the DASL-compiler.

e leanEA. In [BP95] Beckert and Posegga describe an extremely small Prolog pro-
gram which turns the Prolog interpreter itself into a virtual machine on which
evolving algebras can be run. Hence, the Prolog interpreter extended with this
Prolog program constitutes an evolving algebra interpreter. This interpreter is
called lean FA. In the same paper, a second version of lean FAis presented, which
accepts modularized evolving algebras.

5.2 Evolving algebra run analyzers

To provide feedback to evolving algebra specification, it is desirable to be able to
investigate the behavior of an evolving algebra during its run. Hence, a run analyzer
is needed, which allows one to run an evolving algebra step by step, and to inspect its
intermediate states.

Two evolving algebra run analyzers have been realized.

e In [HM] Huggins and Mani describe an evolving algebra run analyzer which is
implemented and embedded in the programming language C. We will refer to
this tool as the C run analyzer.

e In [Die95b] Diesen describes an evolving algebra run analyzer which is imple-
mented and embedded in the programming language Scheme. We will call it the
Scheme run analyzer.

5.3 Interactive theorem provers

An evolving algebra run analyzer is useful for testing, investigating and debugging
evolving algebras. However, one does not only want to inductively confirm hypotheses
about evolving algebras, but even deductively prove them. For this purpose, an in-
teractive theorem prover can be helpful. The task of an interactive theorem prover is
to assist its user in constructing proofs for theorems about specific evolving algebras.
This assistance should involve automatic generation of subproofs, application of proof
steps indicated by the user, and organized presentation of constructed (partial) proof-
s. Prerequisite to the development of a theorem prover is the formulation of a proof
theory for evolving algebras. For simplified one-sorted evolving algebras an attempt
at formulating such a proof theory has been made by Poetzsch-Heffner in [PH94]. But
for general evolving algebras no proof theory is currently available, and no interactive
theorem provers have been built.

Somewhat less ambitiously, theorem provers could be developed that are dedicated
to specific theorems. For instance, tools could be constructed for proving that a given
evolving algebra is consistent, or that it is deterministic, or that it terminates for
arbitrary input. At the moment, no such dedicated provers exist.

78 Chapter 5. Inventory of evolving algebra support

5.4 Evolving algebra transformers

In [Die95a] Diehl defines a number of transformations on evolving algebras. Among
these transformations are macro expansion and transition rule flattening. All these
transformations are optimizing techniques with which a given evolving algebra can be
transformed to an operationally equivalent evolving algebra that is more efficient.
Another example of a transformation on evolving algebras is partial evaluation. A
partial evaluator specializes the specification of an evolving algebra for specific input,
thus generating a specification of a specialized evolving algebra. Partial evaluation
is especially useful in case of evolving algebras which specify programming language
compilers. Specialization of such an evolving algebra for a specific source program
yields an evolving algebra specification for this program. Partial evaluation has been
defined by Huggins in [Hug95]. A partial evaluator has been implemented in C.

We have listed four kinds of evolving algebra tools: compilers, run analyzers, theo-
rem provers, and transformers. Implementations of some of these kinds of tools have
already been realized. Unfortunately, all these implementations have some shortcom-
ings. For instance, the DASL-compiler does not accept modular evolving algebras
and does not provide the evolving algebras it accepts with an interface to their en-
vironment. Neither version of lean FA supports dynamic sorts. The run analyzers
implemented in C and Scheme do not offer any support for non-deterministic evolving
algebras. The Scheme run analyzer requires evolving algebra to be specified in a syn-
tax that deviates considerably from the conventional evolving algebra notation. The
C run analyzer requires static functions to be specified in a way that is inelegant and
quite deviant from mathematical usage.

A further shortcoming of the tools implemented so far is that they all require
evolving algebras to be specified in different notations, and that they operate in iso-
lation from each other. It is desirable for an evolving algebra designer to be able,
for example, to compile an evolving algebra whose run he has just analyzed, and to
subsequently use the compiled evolving algebra as a module inside a larger evolving
algebra. Therefore, evolving algebra tools from different categories would preferably
be integrated into a single evolving algebra development environment.

In short, there is a demand for an evolving algebra development environment, that
satisfies the following minimum requirements:

e Modularized evolving algebras are accepted.
e Many-sorted evolving algebras are accepted.

e Dynamic sorts are allowed.

Non-determinism is supported.
e Static functions and sorts can be specified elegantly.
e A compiler and a run analyzer are available that can be used in combination.

In the next section we will present EVADE, an evolving algebra development environ-
ment that meets these minimum requirements.

Chapter 6

EVADE: an evolving algebra
tool

6.1 Overviewo 79
6.2 Exampleo 81
6.2.1 Preparing EVADE and the evolving algebra 82
6.2.2 Using EVADE on the evolving algebra 83
6.3 Advanced features L oL oL 86
6.3.1 Static function definitions L 0oL 86
6.3.2 Static sort definitions oL o000 87
6.3.3 Modularized evolving algebras 87
6.3.4 Non-determinism 88
6.4 SUMMATY o e e e e e e e 90

EVADE is an evolving algebra tool developed by the author. It comprises an evolving
algebra compiler and an evolving algebra run-analyzer. The tool is embedded and im-
plemented in the functional programming language Gofer. This chapter will describe
EVADE from the viewpoint of a user.

6.1 Overview

The evolving algebra formalism is embedded in standard mathematics. More specifi-
cally, evolving algebra specifications make use of mathematical sets and functions to
serve as values of sort identifiers and function identifiers. As a consequence, when de-
signing an evolving algebra tool, it is necessary to decide on a formalism for specifying
functions and sets. We have decided to use a strongly typed functional programming
language for this purpose: Gofer. A concise exposition of Gofer can be found in chap-
ter 8. Mathematical sets are modelled by Gofer types. Mathematical functions are
modelled by Gofer functions. Thus, the evolving algebra tool EVADE is embedded in
the functional programming language Gofer.

79

80

Chapter 6. EVADE: an evolving algebra tool

preprocessor

*.gea *.g3

(compiler) (run analyzer)

USER

Figure 6.1: Files and components of EVADE.

Input to EVADE is of two kinds: evolving algebra specifications and Gofer defi-
nitions. The evolving algebra specifications will be assumed to reside in files with
extension ea. The Gofer definitions are stored in Gofer script files, which have exten-
sion gs by convention. The Gofer script files can be used directly by EVADE’s compiler
and run-analyzer. The evolving algebra specification files, on the other hand, need to
undergo preprocessing. The EvADE-preprocessor converts evolving algebra specifica-
tions to an intermediary representation, and stores this representation in a file with
extension gea. This latter file can be read by the compiler and the run-analyzer. The
relationships between the files and components of EvADE is depicted in figure 6.1.

The syntax of the evolving algebra specifications accepted by EvADE departs only
slightly from the syntax used in part I. We briefly list the main differences:

Evolving algebras are provided with a functional module header, as described
in section 3.5. In these headers, only 0-ary function identifiers can be used as
parameters. The types of these identifiers must be described with sort names
declared in the signature.

The keywords SS, DS, SF and DF are used in stead of static sorts, dynamic
sorts, static functions and dynamic functions.

Instead of the triple arrow =, we use ==>.

The arrow — 1s replaced by ->.

The cartesian product A x B x C'is represented by a list notation (4,B,C).
The logical connectives A, V and — are represented by /\, \/, and not.

Nested update sets are terminated with a period.

6.2. Example 81

e The remove update is not supported.

The static sort of natural numbers is predefined, as well as a number of functions on
natural numbers. They are bound to the Gofer type Int and the corresponding Gofer
functions on this type.

The absence of remove updates is motivated by a combination of considerations.
Remove updates do not perform an essential role in the specification of algorithms.
Their utility lies in the management of storage resources. Several possible implemen-
tations of the remove update are conceivable. In order to decide between alternative
implementations it is necessary to assess the consequences of the various alternatives
for future extensions of EvADE. An undeliberated choice of implementation might
complicate in particular the extension of EvADE with procedural modules.

6.2 Example

We will now demonstrate the use of EVADE for the example evolving algebra presented
in chapter 1. We will assume the following evolving algebra specification to be present
in the file faclist.ea:

MODULE faclist (n : N) head(last):N
SS
DS ListElem
SF
DF i:N
head : ListElem -> N
tail : ListElem -> ListElem
root : ListElem
last : ListElem
START i := 0
NEW e : ListElem WITH
head(e) := 1

root = e
last = e .
TRANSITION step
IF i < n

THEN i := i + 1
NEW e : ListElem WITH

head(e) := head(last) * (i+1)
tail(last) := e
last = e .

STOP i = nmn

Three differences with the evolving algebra specification given in section 1.2 must
be noted. Firstly, a functional header has been added. The static function n appears in
this header instead of in the static function clause. Secondly a stop condition has been
added at the bottom. Strictly speaking, this stop condition is redundant; it is satisfied
in all possible final states of this particular evolving algebra. For documentation
purposes, however, it can be useful. The third difference between the specification
given to EVADE and the one presented in section 1.2 is the omission of the names N,
+ and * from the static sort clause and the static function clause, respectively. This
is due to the fact that the natural numbers and operations on them are predefined in
EVADE. Note that the keywords SS and SF can not be omitted even though no static
sorts or static functions are declared.

82 Chapter 6. EVADE: an evolving algebra tool

6.2.1 Preparing EvADE and the evolving algebra

We will now walk through the three steps the user of EVADE needs to take in order to
load the example evolving algebra into the system.

Step 1: loading EVADE

Once the user has created the above specification and stored it in the appropriate
file, an EVADE session can be begun. To begin an EVADE session the user types the
following at the Unix prompt:

gofer + EvVADE.gp

(The + indicates that the file to be loaded is a Gofer project file. The conventional
extension for these files is gp) As a result, the Gofer interpreter is entered and the
EVADE program is loaded into the Gofer interpreter environment. Two functions are
now available to the user: compile and analyze. Shortly, we will explain how these
functions are applied to evolving algebras. After this step of loading EvVADE, the user
finds himself at the Gofer prompt, which is a single question mark.

Step 2: preprocessing an evolving algebra

Before an evolving algebra can be loaded into EvADEand used, it must be preprocessed.
To apply the preprocessor to the evolving algebra specification in the file faclist.ea,
the user must type the following at the Gofer prompt:

? preprocess '"faclist"

The preprocessor will now convert the evolving algebra specification in the file faclist.

to an internal evolving algebra representation, which is stored in the file faclist.gea.
When the preprocessor is done, the user is returned to the Gofer prompt.

Step 3: loading an evolving algebra Finally, the preprocessed evolving algebra
can be loaded into EVADE. To load the example evolving algebra into the system, the
user must type the following at the Gofer prompt:

? :a faclist.gea

(The Gofer interpreter command :a loads the specified file into Gofer in addition to
the files that have been loaded before.) As a result, the file faclist.gea in which the
internal evolving algebra representation is stored, is loaded into Gofer in addition to
the EVADE program files that were already loaded. The user is presented again with
the Gofer prompt, and two new identifiers are now available to him:

e faclistEA: the evolving algebra specified by the evolving algebra specification
in the file faclist.ea.

e faclist: the function which results from applying the compiler to the evolving
algebra faclistEA.

To the first of these two identifiers, the compiler and the run analyzer can be applied.
The second identifier is a function with the following definition:

faclist n = compile (faclistEA n)

ea

6.2. Example 83

Hence, this function is the result of applying the compiler to the evolving algebra. As
a consequence of the availability of this function, the user never explicitly needs to use
the function compile to invoke the compiler. In stead, he can resort to the function
faclist, which invokes the compiler implicitly.

The run analyzer can also be applied to the identifier faclistEA. How this is done
will be explained in the course of the next section.

6.2.2 Using EVADE on the evolving algebra

By the three steps presented above, EVvADE and the preprocessed example evolving
algebra are loaded into the Gofer environment. All preparations have now been made
to start actually using the example evolving algebra. Basically, it can be used in two
ways:

e The compiled evolving algebra can be used as a Gofer function for different
purposes.

e The runs induced by the evolving algebra can be analyzed.

We will consider these uses of the evolving algebra in turn.

Using the compiled evolving algebra as a function

The compiled example evolving algebra is the Gofer function faclist. It can be used
as any other Gofer function for different purposes. For instance, we can evaluate the
function at the Gofer prompt for a given argument:

? faclist 7
5040
(7257 reductions, 13775 cells)

Alternatively, we can use the function to define other functions. For instance:
comb n r = faclist n / (faclist r * faclist (n-r))

Like any other Gofer function, faclist can be partially applied, and used as argument
for a higher order function:

facs = map faclist [1..]

According to this definition, facs is the infinite list of factorials of the natural numbers.

Finally, the function produced by compiling an evolving algebra can be used as
the interpretation of a static function name in another evolving algebra specification.
This implies that evolving algebras can be used as functional modules to build larger
evolving algebras. An example of such modularization will be given below in section

6.3.3.

Analyzing the run of an evolving algebra

The evolving algebra faclistEA induces a transition tree for every argument. We can
analyze such a tree with the run analyzer. To enter the run analyzer for the example
evolving algebra with argument 7, the user needs to type:

? analyze (faclistEA 7)

84 Chapter 6. EVADE: an evolving algebra tool

As a result, a welcome message is shown, as well as the initial state of the evolving
algebra, which is the root of the transition tree.

Transition : START

n:7
ListElem : {@0}
i:0

head : <function>
tail : <undef>
root : @O

last : @0

Quit/Step/Back/Eval/Until/Refresh >>

As can be seen from this example, static sorts are not shown. Dynamic sorts are
shown as collections of anonymous elements. These anonymous elements are shown
as numbered at-signs. Functions are not printable in general, and are therefore shown
as <function>.

The user now finds himself at the following prompt:

Quit/Step/Back/Eval/Until/Refresh >>

This prompt lists the run analyzer commands. The user can issue these commands
by typing them in full at the prompt, or by giving only their first letter. Using these
commands, the user can navigate through the transition tree, and inspect the states
which are its nodes.

Inspecting the current state FEach time the run analyzer changes to a new state,
the content of that state will be displayed. To inspect dynamic functions and non-
dynamic portions of the state, the user can issue the eval command. This command
will ask the user for an arbitrary expression, evaluate this expression and print its
value. For example:

Quit/Step/Back/Eval/Until/Refresh >> eval
Expression >> head(last)

Value: 1
Quit/Step/Back/Eval/Until/Refresh >> eval
Expression >> root

Value: @0
Quit/Step/Back/Eval/Until/Refresh >> eval
Expression >> tail(root)

Value: <undef>
Quit/Step/Back/Eval/Until/Refresh >>

When the user issues the refresh command, the current state will be re-displayed.
This command is useful especially after a number of eval commands have been issued.

6.2. Example 85

Navigate to another state To navigate through the transition tree, the user has
three commands at his disposal: step, until, and back. The step command can be
used to take a single step down the transition tree, to the successor of the current
state.

Quit/Step/Back/Eval/Until/Refresh >> step
Transition : step

n : 10
ListElem : {@1,00}
i1

head : <function>
tail : <function>
root : @O
last : @1

Quit/Step/Back/Eval/Until/Refresh >>

The until command makes it possible to go several steps down the transition tree
When this command is issued, the user is asked for a stop condition. Then, the run
analyzer will descend the transition tree until a state is entered in which the stop
condition is satisfied.

Quit/Step/Back/Eval/Until/Refresh >> until
Stop condition >> i > 4

Transition : step

Transition : step

Transition : step

Transition : step

Stop condition is satisfied.

n : 10
ListElem : {@5,04,@3,0@2,01,00%}
i: 5

head : <function>
tail : <function>
root : @O
last : @5

Quit/Step/Back/Eval/Until/Refresh >>

The back command is used to return to the state that was previously current.

We briefly summarize the available run analyzer commands:

step Make a transition to a successor of the current state.
back Return to the previously current state.

eval Evaluate an expression in the current state.

until Evolve until a given stop condition is satisfied.
refresh | Show the current state anew.

quit End the run analyzer session.

These commands can be issued by typing them in full, or just their first letter.

86 Chapter 6. EVADE: an evolving algebra tool

6.3 Advanced features

In the foregoing section we have demonstrated the basic features of EvADE. In this
section, we will show how EvADE handles static function definitions, non-determinism
and modular evolving algebras.

6.3.1 Static function definitions

In the example of the previous section, we used the predefined operator * for natural
number multiplication. To demonstrate how static function definitions are handled
in EVADE, we will modify this evolving algebra specification to import the function
mult in stead of relying on predefined multiplication. The modified specification is as
follows:

MODULE facmult (n : N) head(last):N
SS
DS ListElem
SF mult : (N,N) -> N ==> mult
DF i:N

head : ListElem -> N

tail : ListElem —-> ListElem

root : ListElem

last : ListElem
START i := 0

NEW e : ListElem WITH

head(e) := 1
root = e
last = e .
TRANSITION step
IF i <n

THEN i := i + 1
NEW e : ListElem WITH

head(e) := mult (head(last),i+1)
tail(last) := e
last = e

STOP i = n

We assume this evolving algebra specification to be present in the file facmult. ea.
The arrow ==> indicates that the static function name mult on the left hand side, is
interpreted as the Gofer function mult on the right hand side. The static function
name and the name of the Gofer function need not be the same. Of course, this
evolving algebra specification must be supplemented with the Gofer specification of
mult:

mult :: Int -> Int -> Int
mult = (*)

Note that the Gofer function mult is curried, whereas the evolving algebra static
function name mult is not. We assume this Gofer function definition to be present in
the file mult.gs.

To load this evolving algebra into EVADE, the user needs to perform an extra step.
As before, he must start EVADE and preprocess the evolving algebra by the following
commands:

6.3. Advanced features 87

unix—> gofer + EvADE.gp
? preprocess '"facmult"

The preprocessed evolving algebra can be loaded into EVADE after the definition of
mult is loaded. Thus, the user must type the following two commands at the Gofer
prompt:

:a mult.gs
? :a facmult.gea

Now the modified evolving algebra is loaded, and ready for use.

6.3.2 Static sort definitions

Up till now we have only used the predefined static sort N. We will now give an example
of a static sort definition in EVADE. To demonstrate how static function definitions are
handled in EvADE, we will modify our previous example specification to import the
gofer type Int in stead of relying on the predefined sort N. The modified specification
is as follows:

MODULE facmultInt (n : Nat) head(last):Nat
SS Nat ==> Int
DS ListElem
SF mult : (Nat,Nat) -> Nat ==> mult
DF i:Nat
head : ListElem -> Nat
tail : ListElem —-> ListElem
root : ListElem
last : ListElem

START i := 0
NEW e : ListElem WITH
head(e) := 1
root = e
last = e .
TRANSITION step
IF i <n

THEN i := i + 1
NEW e : ListElem WITH

head(e) := mult (head(last),i+1)
tail(last) := e
last = e

STOP i = n

This specification is obtained from the previous example by replacing all occurrences
of N by the static sort name Nat. In the static sort clause marked by SS, this static sort
name is bound to the Gofer type Int. This evolving algebra can be used in exactly
the same way as the previous one.

6.3.3 Modularized evolving algebras

In stead of defining mult as a Gofer function, we can define it as an evolving algebra.
Consider the following evolving algebra specification:

88 Chapter 6. EVADE: an evolving algebra tool

MODULE mult (n:N, m:N) result:N
SS
DS
SF
DF regil:N
reg2:N
result:N
START regil
reg2 :
result
TRANSITION step
IF regl /=0
THEN regl := regl - 1
result := result + reg2
STOP regl = 0

1]
ns B

Compiling this evolving algebra yields the following Gofer function:

mult :: N -> N -> N
mult x y = compile (multEA x y)

Loading this evolving algebra in stead of the Gofer script file mult.gs will make
facmult (as well as its derivate facmultInt) a modularized evolving algebra.

unix-> gofer + EvADE.gp
? preprocess 'mult"

? preprocess '"facmult"
? :a mult.gea

? :a facmult.gea

This modular evolving algebra can be analyzed and used in the same way as its non-
modular counterpart.

6.3.4 Non-determinism

The foregoing examples were all deterministic evolving algebras. As an example of a
non-deterministic evolving algebras, consider the following specification:

MODULE nondet i:N
SS
DS
SF
DF i:N
START i := 0
TRANSITION up

IF True

THEN i := i + 1
TRANSITION down

IF True

THEN i := i - 1
STOP False

We load this evolving algebra into EVADE as follows:

6.3. Advanced features 89

unix—> gofer + EvADE.gp
? preprocess ''nondet"
? :a nondet.gea

We can investigate the transition tree of this evolving algebra with the run analyzer.
To enter the run analyzer the user types:

? analyze nondetEA

As a result, the run analyzer is entered, and the initial state is shown:

Transition : START

Quit/Step/Back/Eval/Until/Refresh >>

Due to the non-determinism present in this evolving algebra, the current state does
not have a unique successor, but two. When the step command is issued, the user is
asked to choose between the applicable transitions:

Quit/Step/Back/Eval/Until/Refresh >> step
Applicable transitions:
1. up
2. down
Pick a number between 1 and 2 (or 0 for random choice) >> 2
Transition : down

i: -1
Quit/Step/Back/Eval/Until/Refresh >>

As indicated by the prompt, the user can delegate the choice between applicable
transitions to the random number generator, by typing 0.

The user can retrace his steps to try alternative routes through the transition graph
by using the back command:

Quit/Step/Back/Eval/Until/Refresh >> back
Return to previous state

i:0
Quit/Step/Back/Eval/Until/Refresh >>

When the until command is issued, the random generator will decide between appli-
cable transition rules at each step:

Quit/Step/Back/Eval/Until/Refresh >> until
Stop condition >> i>1

Transition : down

Transition : down

90 Chapter 6. EVADE: an evolving algebra tool

At the Unix prompt:

gofer + EvADE.gp Load EVADE.

At the Gofer prompt:
preprocess "fname" Preprocess EA specification in fname. ea.
:a fname.gs Load Gofer definitions in fname.gs into Gofer.
:a fname.gea Load preprocessed EA specification into Gofer.
name args Run an EA with given arguments.

compile (nameEA args) | Run an EA with given arguments.
analyze (nameEA args) | Start the run analyzer for an EA.

At the run analyzer prompt:

step Transfer to a successor of the current state.
back Return to the previously current state.

eval Evaluate an expression in the current state.
until Evolve until a given stop condition is satisfied.
refresh Show the current state anew.

quit End the run analyzer session.

Table 6.1: EvADE command summary

Transition : up
Transition : up
Transition : up

Stop condition is satisfied.
i:2

Quit/Step/Back/Eval/Until/Refresh >>

6.4 Summary

EVADE consists of a preprocessor, a compiler and a run analyzer for non-deterministic,
modularized, many-sorted evolving algebras. Static function and sorts are specified
as Gofer functions and types, and imported into the evolving algebra specification.

Table 6.1 summarizes EVADE’s commands. EVADE is loaded by typing gofer +
EvADE.gp at the Unix command prompt. An evolving algebra is preprocessed by typ-
ing preprocess "filename" at the Gofer prompt, assuming its specification resides
in the file filename.ea. A preprocessed evolving algebras is loaded into Gofer by
typing :a filename.gea at the Gofer prompt. As a result, the evolving algebra and
its compiled form become available as nameEA and name in the Gofer environment.
The latter function can be used in Gofer definitions and at the Gofer prompt just as
any other Gofer function. A run analyzer session for the evolving algebra is started
by typing analyze (nameEA arguments) at the Gofer prompt.

At each moment during a run analyzer session, one of the states of the transition
graph induced by the evolving algebra is the current state. At the start, the initial

6.4. Summary 91

state is the current state. The command step allows the user to descend the tree
one step at a time. The command until allows the user to descend several steps
in succession, until a state is reached in which a given stop-condition is true. The
command back allows the user to retrace his steps, to the state that was current
before. The command eval allows the user to evaluate an expression in the current
state. The command refresh redisplays the current state. The command quit brings
the user back at the Gofer prompt.

EVADE satisfies the minimum conditions formulated at the end of chapter 5. It com-
prises a compiler and a run analyzer that can be used in combination. Also, it ac-
cepts many-sorted evolving algebras with functional modules. Dynamic sorts and
non-determinism are supported by EvADE as well. Through the functional program-
ming language Gofer, static functions and sorts can be specified elegantly.

In order to obtain a clearer impression of the merits and demerits of EVADE, a
comprehensive comparison must be made with other evolving algebra tools. This will
be done in the next chapter.

Chapter 7

Comparison of EVADE with
other tools

7.1 Comparison with respect to the evolving algebras that are accepted. 93

7.2 Comparison of tools within their categories 96
7.2.1 Comparison of compilers 96
7.2.2 Comparison of run analyzers 96

7.3 General evaluation o o oo 98

Evolving algebra tools can be compared from two angles. Firstly, they can be com-
pared with respect to the evolving algebras accepted by them. For instance, some
tools may accept non-deterministic evolving algebras, while others only accept deter-
ministic ones. Secondly, tools can be compared within their category, with respect to
the specific task they are supposed to perform. For example, some evolving algebra
run analyzers may allow the user to trace a run in backward order, while others may
allow only forward tracing. We will submit EVADE to comparisons with other tools
from both angles.

EVADE comprises a compiler and a run analyzer. We will restrict our compari-
son from either angle to evolving algebra tools from these two categories. The tools
concerned are:

e The modular and non-modular version of lean FA.

e The DASL-ALMAcompiler, or DASL-compiler for short.
e The C run analyzer.

e The Scheme run analyzer.

In section 7.1 these tools are compared to EVADE with respect to the evolving algebras
that are accepted by them. In section 7.2 we will compare these tools to EVADE within
their respective categories. Finally, in section 7.3, a general evaluation of EvADE will
be distilled from the various comparisons.

92

7.1. Comparison with respect to the evolving algebras that are accepted. 93

7.1 Comparison with respect to the evolving alge-
bras that are accepted.

Initial state description

For the description of evolving algebra rules, a fairly standard syntactical convention
exists. All existing evolving algebra tools follow this convention fairly closely.

For the initial state description, no standard convention is available. In EVADE,
the description of the initial state is split into two parts. The first part is a mapping of
static functions and sorts to Gofer functions and types. This mapping is integrated into
the signature. Naturally, the Gofer functions and types are specified in the language
Gofer itself. Gofer types and functions can be specified very elegantly, in a way that
is strongly reminiscent of mathematical practise. The second part of the initial state
description is the start update set.

All evolving algebra tools on our list, except the non-modular version of leanFA,
apply such a division of the initial state description. With respect to the start update
set, they are all very similar to EvADE. But with respect to the specification of values
for static sort names and static function names, significant differences can be noted.

Modular lean FA is very similar on this point to EVvADE. Integrated into the sig-
nature, a mapping is given of static function names to Prolog predicates. These
predicates are of course specified in Prolog itself.

The DASL-compiler uses a slightly different setup. To specify the static sorts and
functions, no use is made of an external language in which DASL is implemented. In
stead, the evolving algebra specification language is extended with a number of con-
structs with which these specifications can be made. Sorts are defined by giving their
constructors, and functions are defined by sets of equations. Thus, mathematical sets
and functions are not imported, but specified inside the evolving algebra specification
itself.

The C run analyzer offers two ways to give interpretations to static function names.
Firstly, C routines can be imported and assigned as interpretations to static function
names. This method is not very elegant, because C routines are not necessarily purely
functional and do therefore not always specify acceptable mathematical functions.
Secondly, static functions can be defined inside the evolving algebra specification itself.
In definitions of of functions of arity N, the symbols $1..$N must be used as argument
names.

The Scheme run analyzer allows Scheme function to be imported as values of static
function names.

Many-sorted versus one-sorted evolving algebras

Evolving algebras can be categorized into many-sorted ones and one-sorted ones. In
many sorted evolving algebras, the evolving algebra signature specifies a full function
signature for every function identifier. This function signature specifies the function
to take arguments of certain sorts, and to return a value of a certain sort. If the
function is supplied with an argument of inappropriate sort, an error occurs. In
one-sorted evolving algebras, the evolving algebra signature specifies only arities of
functions, since all arguments and return values are of the same sort. A function can
be undefined for arguments of certain sorts, but no sort errors can occur.

EVADE accepts many-sorted evolving algebras. The static sorts of boolean values
and integers are predefined. Other static sorts can be imported at will.

94 Chapter 7. Comparison of EvADE with other tools

The DASL-compiler is many-sorted as well. Static sorts can not be imported into
evolving algebras. Instead, the evolving algebra specification is extended with two
clauses: one to list new sort names, and one to define constructors on these sorts.
These user defined static sorts are allowed to be polymorphic.

The C run analyzer and both the non-modular and the modular version of lean FA
are one-sorted. The C run analyzer allows the simulation of many sorts by universes.

The Scheme run analyzer has a very unusual attitude towards sorts. Static sorts
are not declared explicitly, but inferred from the function signatures. The binding of
static sort names to Scheme types is also done implicitly. Since Scheme does not have
a strong type system, the static sort system is not strong either. Values may have
several types at a time.

Dynamic sorts and universes

In many sorted evolving algebra, the sorts can be divided into static sorts and dynamic
sorts. The extend instruction allows dynamic sorts to grow, and the remove instruction
allows them to shrink. In one-sorted evolving algebras with universes, the universes
can be divided into static ones and dynamic ones. In these algebras, an extend and a
remove instruction may also be supported. These allow expansion and contraction of
universes in stead of sorts.

EVADE has both static and dynamic sorts. An extend instruction is supported on
dynamic sorts. The implementation of support for the remove instruction has been
suspended to future extensions of the tool.

Scheme has both static and dynamic universes. It has an extend instruction, but
no remove instruction.

The DASL-compiler has both static and dynamic sorts. It has both an extend
instruction and a remove instruction on dynamic sorts.

The C compiler has both static and dynamic universes. It has both an extend and
a remove instruction on the dynamic universes.

Neither version of lean FA has sorts or universes. As a result, no dynamic sort or
universes are present, and no extend or remove instructions are supported.

Determinism versus non-determinism

EVADE supports non-deterministic evolving algebras. The compiler chooses between
various applicable transition rules with the help of a random number generator. The
interactive run analyzer offers the user the possibility to choose between the various
applicable rules himself, or to invoke the random number generator.
Non-determinism is not supported by the DASL-compiler, the Scheme run ana-
lyzer, the C run analyzer or either of the versions of lean FA. When several rules are
applicable simultaneously, these tools will always execute the first one encountered.

Modularization

In EVADE, evolving algebra specifications have a functional module header of the kind
described in section 3.5. Their parameters are all 0-ary static functions. The EvADE-
compiler converts these functional modules to Gofer functions. The resulting Gofer
functions can in turn be used as interpretations of static functions in evolving algebra
specifications. Hence, EVADE supports functional modules. For an example see section

6.3.3.

7.1. Comparison with respect to the evolving algebras that are accepted. 95

The modular version of lean FA likewise supports modules. These modules are syn-
tactically different from the functional modules described in section 3.5 and supported
by EvADE. But semantically, they can be classified as functional modules. The head-
ers of these modules have a list of input parameters and a list of output parameters.
The lean EA-interpreter converts these modules into two-place Prolog predicates. The
first place is intended for a list of actual parameters. The second place is intended
for a variable to which the list of output values of the module will be bound. These
Prolog predicates can be used to provide interpretations of static functions in evolving
algebra specifications.

The DASL-compiler, the C run analyzer and the Scheme run analyzer do not
support either functional or procedural modules.

Distributed evolving algebras

The C run analyzer is the only evolving algebra tool that offers support for distributed
evolving algebras.

Parallelism

The C run analyzer accepts evolving algebras with variable declarations. Thus, this
tool supports massive parallelism. Other forms of parallelism are not supported by
any of the existing evolving algebra tools.

External functions

The C run analyzer is the only existing tool that supports external functions.

Stop conditions

An evolving algebra terminates when a state is reached in which no transitions are
applicable. EvADE, allows a stop condition to be specified, with which intended and
non-intended final states can be distinguished. The termination of an evolving algebra
is ruled abnormal when the stop condition is false in its final state (see also section
3.2.2).

The DASL-compiler and the modular version of lean FA also allow a stop condition
to be specified, but the semantics of these is different. In lean FA the evolving algebra
terminates when the stop condition is true, irrespective of whether any of the transition
rules is applicable. In DASL, the stop condition is the guard of a distinguished result-
rule, the updates of which are allowed to be output operations only. This rule is fired
as soon as the stop condition is satisfied, irrespective of whether any other rules are
applicable.

Neither the C run analyzer, nor the Scheme run analyzer accepts evolving algebras
with stop conditions. The C run analyzer, however, allows integrity constraints to be
imposed on an evolving algebra (see section 7.2.2). With such a constraint, the effect
of a stop condition with a semantics as in leanEFA and DASL, can be obtained.

96 Chapter 7. Comparison of EvADE with other tools

7.2 Comparison of tools within their categories

7.2.1 Comparison of compilers

In this subsection we will compare the available evolving algebra compilers: EVADE,
the DASL-compiler, and both version of lean KA.

Interfaces

The EVADE compiler transforms an evolving algebra into a Gofer function. Naturally,
this function takes Gofer values as arguments, and returns a Gofer value. Thus, the
EVADE compiler interfaces evolving algebras with Gofer. Since the Gofer environment
in turn offers an interface to the operating system, it is possible to give evolving
algebras an interface with the operating system.

In the non-modular version of lean FA, evolving algebras do not take arguments.
Also, they do not return their arguments to their environment, but print them to
the screen. Hence, non-modular lean EA does not equip its evolving algebras with
interfaces.

The modular version of lean FA transforms evolving algebras to Prolog predicates.
These predicates have two parameters. The first parameter is a list of input values.
The second parameter is a list of output values. Hence, leanEA provides a logical
interface for its algebras.

The DASL-compiler is similar to the non-modular version of lean EA. Its evolving
algebras take no arguments and print their results in stead of returning them. Hence,
these algebras have no interface.

Optimization

The DASL-compiler is the only evolving algebra compiler on our list that applies
optimization techniques. The program of the evolving algebra is transformed into a
decision tree. The internal node of this tree are conditions that are extracted from the
transition rule guards. The leaves of the decision tree are update sets. The compiler
also sees to 1t that common subexpressions become shared. This makes evaluation of
these expressions more efficient.

7.2.2 Comparison of run analyzers

In the category of run analyzers, there are three candidates for comparison: EVADE,
the C run analyzer, and the Scheme run analyzer. We will perform our comparison
on the basis of the user commands offered by these tools.

Execution of transitions

The EvADE-run analyzer offers to commands for descending the transition graph of
an evolving algebra: step and until. The former takes a single step down the tree.
The latter descends until a state is encountered in which a given stop condition is
satisfied. To let the evolving algebra run until a final state is reached, one can give
the condition False to the until command.

The C run analyzer offers commands with the same functionality. They are called
step and run until. Additionally, the commands step n, run and run while can

7.2. Comparison of tools within their categories 97

be given. The first of these executes a given number of steps, the second runs until a
final state is reached and the third runs until a given condition is no longer satisfied.

The Scheme run analyzer offers the commands run, which performs one step, run
n, which performs a given number of steps, and run 0, which runs until a final state
is reached.

Inspection of states

EVADE offers two commands that serve to inspect the current state: refresh and
eval. The former shows the content of the entire current state. Of course, functions
are not printable, and are shown as <function>. The eval-command can be used
to inspect the value of an arbitrary expression in the current state. For instance, the
value of a function name for certain arguments can be inspected using eval.

The C run analyzer offers a command similar to EVADE’s eval, which is called
value. In addition, there is a command called show which can be used to inspect
various internal data structures of the run analyzer, such as tables of transition rules,
and currently defined integrity constraints. The function show functions can be used
to inspect the entire current state.

The Scheme run analyzer offers a more powerful variant of eval and value. The
command called scheme can be used to evaluate an arbitrary scheme expression. Since
evolving algebra expressions are modelled as Scheme expressions, this includes the e-
valuation of arbitrary evolving algebra expressions in the current state. To show the
content of the current state, the Scheme tool offers the command bindings. Addition-
ally, there are three commands called defstat, records, and runstat, that result in
the display of a very comprehensive list of definition statistics and run-time statistics.
These numbers include totals of updates executed, totals of guards evaluated, totals of
universe extensions performed, and a ratio that indicates the degree of indeterminism.

Support for integrity constraints

The C run analyzer offers commands to declare, disable and enable integrity con-
straints. These commands are called watch, enable and disable. When an integrity
constraint is enabled, the run analyzer will halt when 1t reaches a state in which this
constraint is not satisfied. Integrity constraints are particularly useful when many-
sorts are simulated by universes within a one-sorted evolving algebra. The constraints
can than be used to watch the integrity of the simulated sorts.

Backtracking capabilities

EVADE offers the command back, which allows the user to return to previous states.
This command is especially helpful for the analysis of non-deterministic runs. It
avoids the need to rerun the evolving algebra from the initial state in order to explore
alternative paths through the transition graph. The C run analyzer and the Scheme
run analyzer lack this feature. In stead, they offer commands called, restart and
reset, which unload the current evolving algebra and propels the run analyzer in a
state of tabula rasa.

98 Chapter 7. Comparison of EvADE with other tools

7.3 General evaluation

EVADE’s weak points

There are a number of features that are supported by some of the evolving algebra
tools, but not by EVADE. Some of these lacking features are somewhat controversial
from a theoretical standpoint. For instance, the theory of external functions and
distributed evolving algebras has not yet been satisfactorily developed. As a result,
the lack of support for these features by EVvADE need not be viewed as a deficiency.
There are also some features lacking in EVADE that have very little added value, such
as a run analyzer command for executing a fixed number of transitions.

However, there are a number of desirable features for which support is lacking in
in EVADE. These features are:

e Generation of run-time statistics.
e The remove instruction.

e Macros.

e Massive parallelism.

e Integrity constraints.

Since EVADE is many-sorted, integrity constraints are not needed to watch the in-
tegrity of simulated sorts. Still, integrity constraints might be useful to test tentative
invariants on evolving algebra states. All of the features listed above can be added
to EVADE with reasonable little programming effort, and without drastic changes to
existing code.

EVADE’s strong points

There are a number of desirable features that are lacking from some or all evolving
algebra tools, but not from EvADE. These include:

e Functional modules; and an interface to a functional programming language.
e Non-determinism.

o Many-sorts.

e Dynamic sorts.

e Elegant support for the specification of statics.

e Backtracking.

EVADE is unique in supporting all of these features. An additional strong point of
EVADE, is that it offers both a compiler and a run analyzer in a single environment.
Also, the existence of a separate preprocessor, which is shared by the compiler and
the run analyzer, makes it feasible to add more evolving algebra tools to the EvADE
environment without too much effort.

In this chapter and the foregoing two, the standpoint of a user was adopted towards
evolving algebra tools. In the upcoming three chapters, we will shift our viewpoint.
In these chapters, we will describe the implementation of EvADE.

Chapter 8

The programming language

Gofer

8.1 Functions and function definitions 100
8.2 Expressions 101
8.3 Types and type definitions, 102
8.3.1 Type polymorphism 102
8.3.2 Type constructors 103
8.4 Type classes, overloading and polymorphism restriction 104
8.4.1 Typeclasses. 104
8.4.2 Qualified types, instances and classes 105
8.4.3 Varieties of polymorphism 107

This chapter is the first of a group of three that describe the implementation of EvADE.
The program language used in the implementation is surveyed in this chapter. In the
upcoming chapters, the monadic programming method used in the implementation
and the implementation itself are presented.

The programming language used in the implementation is Gofer. We will give an
overview of this language, which is not exhaustive. A complete presentation of Gofer
can be found in the user manual of the Gofer system [Jon], on which this section is
based.

The following remarks constitute an extremely concise characterization of the lan-
guage. Gofer is a lazy functional programming language. It is strongly typed, it
supports type polymorphism, and its functions are curried. Gofer has a powerful
system of type classes, qualified types and overloaded functions.

Gofer was originally developed as an extended subset of the programming language
Haskell [HJe92], and is similar to Haskell in many respects. For the benefit of the
reader familiar with Haskell, we list the most important improvements of Gofer over

Haskell:

e Gofer type classes can take multiple parameters.

99

100 Chapter 8. The programming language Gofer

e In Gofer, type classes can be instantiated for arbitrary non-overlapping types.
e Gofer contexts may contain arbitrary type expressions.

The new Haskell definition (version 1.3) has adopted most of Gofer’s improvements
over the previous version of Haskell.

8.1 Functions and function definitions

Gofer functions are defined by sets of functional rewrite rules, called function bindings.
In Gofer, functions are “first class citizens”. All functions are curried. Functions can
be of polymorphic types. The programmer is not compelled to supply type declarations
of his functions, but when he does, they are checked to be in accordance with the types
inferred by the Gofer system.

Consider the following example of a function definition in Gofer:

fac :: Int -> Int
fac 0 = 1
facn = n * (fac (n-1))

The first line of this function declaration is a type declaration. It declares the function
min to be of type Int -> Int. Type declarations are not mandatory. The Gofer
type inference system does not depend on them. However, the programmer is encour-
aged to supply them. They are useful for purposes of documentation, restriction of
polymorphism, and overloading resolution. The Gofer system compares the declared
type with the inferenced type, and reports any discrepancies. Thus, any discrepancies
between intended type and actual type are brought to light.

The remaining lines of the example function definition are functional rewrite rules,
called function bindings. Their order is significant. They are used top-down in pattern
matching. The first matching line is used for function evaluation. Variables may
occur only once on each left hand side, so equality of arguments can not be expressed
implicitly in the pattern. The right hand side of a function binding may be any
expression in which the variables of the left hand side are allowed to appear unbound.
As is clear from the example, recursion is allowed.

In Gofer, functions are “first class citizens”, 1.e. functions can be be used as actual
arguments and as return values of higher order functions. The possibility of having
functions as return values makes it unnecessary to have functions with more than one
argument. A function with several, say n, arguments can be simulated by a higher
order function with only one argument, which returns a function with n—1 arguments.
This 1s called currying. The advantage of curried functions over functions of multiple
parameters is that they can be partially applied to render more functions. Thus, an
elegant programming methodology is made possible by currying: first specify general
purpose functions, then create special purpose functions by supplying arguments to
the general purpose functions.

In Gofer there are two kinds of function names: ordinary function names, and
operators. Ordinary function names start with a lower case letter. Operators are
strings of symbols, like +, &&, |||, and +->. Ordinary function names are prefix by
default, but they can be turned into infix function names by enclosing them in single
quotation marks. Thus, we can write a ’plus’ b in stead of plus a b. Operators
are infix by default. They can be turned into prefix operators by enclosing them in
parentheses. Thus, we can write (+) a b in stead of a + b.

8.2. Expressions 101

8.2 Expressions

The most important way of constructing Gofer expressions is function application.
Function application has already appeared in the examples above, and is denoted
simply by juxtaposition of arguments to a function name.

In addition to function application, Gofer has several special constructions to build
expressions. We list the most important ones:

Conditional expression The conditional expression has the following form:
if b
then t
else £

where b 1s an expression of type Bool, and t and f are expressions of the same
type.

Case expression The case expression has the following form:

case e of
P1 =-> eq
Pn —> €n

where e is an expression, the p; are patterns, and the e; are expressions of the
same type.

Lambda expression The lambda expression is of the following form:

\p1 -- pn —> e
where the p; are patterns, and e is an expression.

Local definitions There are two forms of expressions that introduce local definitions.
The first is the 1let expression, the second is the where expression. They have
the following forms:

let p1 = eq expr where p; = e
Pn = €n Pn = €n
in expr

where the p; are patterns, the e; are expressions, and expr is an expression.

List comprehension A list comprehension is an expression such as:

[fal a<-1[1,2,3], odd a]

The first expression after the vertical bar | is called a generator. Generators
bind elements from a list to variables. The second expressions is called a filter.
Filters are conditions on variables introduced by generators. List comprehension
can contain several generators and filters. Their order is significant, and may
influence the efficiency with which a list comprehension can be evaluated.

102 Chapter 8. The programming language Gofer

Gofer expressions are evaluated lazily. Note, however, that the pattern matching
involved in function bindings may require partial evaluation of arguments to determine
which line of a function definition is to be applied.

Lazy evaluation enables the use of infinite data structures. For instance, one can

define:

1 : infinite

infinite
finite = take 10 infinite

where take is the function that takes the initial segment of a given length of a given
list. The evaluation of finite will produce a finite list in finite time, even though it
is defined in terms of an infinite list.

8.3 Types and type definitions

The types of Gofer functions are described by type expressions. Type expressions are
built from type variables, type constructors, and type predicates. Type expressions
which contain variables denote polymorphic types. New type constructors can added
to the set of predefined type constructors by datatype declarations and type syn-
onym declarations. Type expressions containing type predicates are used to describe
qualified types, which will not be discussed in the current, but in the next section.

8.3.1 Type polymorphism

Gofer supports type polymorphism. This means that functions can be defined that
operate uniformly on arguments of any type. The types of polymorphic functions are
denoted by type expressions that contain type variables. Type variables are identifiers
that start with lower case letters.

For instance, the function map is of polymorphic type:

map :: (a —>b) > [a]l] —> [b]
map £ [] = 0
map f (x:xs) = f x : map f xs

(The colon (:) in the last line denotes list construction.) The function map can be
applied to arguments of any type:

map (\x —> x+1) [1,2,3,4] ==> [2,3,4,5]
map even [1,2,3,4] ==> [False,True,False,Truel
map isUpper "Foo" ==> [True,False,False]

Here we use the arrow ==> to indicate “evaluates to”. The function map operates on
these arguments of different types according to a single function definition.
Another example of a polymorphic function is the (.) operator:

¢.) :t (b->¢) > (a->0b) > (a->c)
(f .g)x = £ (g x)

The (.) operator denotes function composition. It allows us to force right association
of function application without cluttering up our expressions with parentheses. For
instance, we can write £.g.h xinstead of £(g(h x)). It also allows us in certain cases
to avoid lambda expressions. For instance we can write £.g instead of \x -> £ (g x).

8.3. Types and type definitions 103

8.3.2 Type constructors

There are two kinds of type constructors in Gofer: datatypes and type synonyms.
Both kinds of type constructor can be parameterized. If a type constructor does not
have any parameters, it is called a base type.

Type synonyms A new type synonym is defined by a type synonym declaration of
the following form:

type Name a; .. ap, = t

where Name is the name of the new type synonym, which must start with an upper
case letter, the a; are the parameters of the type synonym, and t is a type expression
which may contain the parameters a;. Type synonym declarations are not allowed to
be recursive. The following are examples of type synonym declarations:

type Name = String
type List a = [al
type List = []

n @

The effect of type synonym declarations is that the declared synonym will be treated
as an abbreviation for the right hand side.

Datatypes A new datatype is defined by a datatype declaration of the following
form:

data Datatype a; .. ap = Cy 1 .. tp | .. | Cu uy .. 1uq

where Datatype i1s the name of the new datatype, the a; are the parameters of the
datatype, the C; are the names of the constructor functions of the new datatype, and
the t; and u; are type expressions. The name of the datatype must start with an
upper case letter. The constructor functions are either prefixed names starting with
upper case letters, or infixed strings of symbols starting with a colon. The names of
the constructors need not be distinct form the datatype. Datatype declarations are
allowed to be recursive. The following are examples of datatype declarations:

data Opt a = Def a | Undef
data Tree a = a :< [Tree al

The datatype Opt can be used to represent optional types. The datatype Tree provides
a way to model general trees.

Predefined type constructors A number of type constructors are predefined in
Gofer, as well as a considerable number of functions on the types constructed with
them.

Bool The boolean type contains two values: True, and False. The predefined boolean
functions include: (&&) (conjunction), (||) (disjunction), not (negation), and
otherwise (a synonym for True).

Char This is the type of characters. Its values are denoted by characters enclosed in
pairs of elevated commas. The predefined character functions include: isAlpha,
isUpper, isLower, isAlphanum, which test whether their argument is a letter, an
upper case letter, a lower case letter, and alpha-numeric character, respectively.

104 Chapter 8. The programming language Gofer

[a]l This is the type of lists of elements of type a. List construction is denoted by a
single colon. The empty list is denoted by [1. A particular list can either be
denoted by repeated application of the list constructor to the empty list (e.g.
(1:(2:(3:[1)))) or by a special syntax using square brackets and commas (e.g.
[1,2,3]). The predefined list functions include head, tail, length, null, map,
and filter.

String This is the type of strings. Its values are denoted by strings of characters
enclosed in pairs of double quotation marks, or equivalently by lists of characters.

Int This is the type of integers. The predefined integer functions include: (+), (=),
(%), div, and mod.

The empty type [1 This type has the value () as its only element.
a -> b This is the function type constructor.

(a,b) This is the tuple type constructor. Predefined functions on tuples include:
fst and snd. Type constructors for tuples of more than two members are also
predefined.

Dialogue This is a special type constructor which is provided to do I/O in Gofer
without loss of referential transparency. A number of functions are predefined in
Gofer to preform I/O using Dialogue in a continuation style. These function-
s include: readFile, writeFile, appendFile, readChan, appendChan, done,
abort, and exit.

Some of the predefined type constructors are built into Gofer, others are defined in
the standard prelude, which is loaded automatically into the Gofer interpreter at the
beginning of each session.

There are two important predefined functions in Gofer, which can have any type.
The first function is undefined. When evaluated, this function will cause abnormal
termination of the program. The second function is error "message". It has the
same effect as undefined, but additionally the error message will displayed.

8.4 Type classes, overloading and polymorphism re-
striction

Gofer allows overloading. This means that a single function name may be used to
denote different functions, depending on the types of its actual arguments. In Gofer,
overloading is supported by a system of type classes.

8.4.1 Type classes

Type classes group together the (tuples of) types for which an overloaded function is
defined. The (tuples of) types that are members of a type class are called its instances.
The following is an example of a type class declaration:

class Eq a where
(== :: a -> a —-> Bool
/=) :: a -> a -> Bool

x /=y = mnot (x ==1y)

8.4. Type classes, overloading and polymorphism restriction 105

The header of this class declaration introduces the single parameter type predicate
Eq. The first two lines of the body of the class declaration introduce the functions
(==) and (/=) and indicate that their type is a => a -> Bool if a satisfies the type
predicate Eq. These functions are called member functions of the class. The last line
of the class declaration gives a default definition for the second member function in
terms of the first.

Once a type class has been declared, declarations can be given of instances of the
class. For example:

instance Eq Bool where

True == True = True
False == False = True
== = False

The header of the this instance declaration declares the type Bool to be an instance
of the type class Eq. The body of the instance declaration defines the first member
function of the type class. A definition of the second member function does not need to
be given, because it is already defined by a default definition in the class declaration.
Note that the operator (==) denotes an equivalence relation which is quite differ-
ent from convertibility (in the sense of having the same (weak head) normal form).

8.4.2 Qualified types, instances and classes

Every class declaration introduces a type predicate of certain arity. Using type pred-
icates, we can formulate qualified types. For instance, using the type predicate Eq we
can formulate the following qualified type:

(Eq a, Eq [b]) => a > Db > ¢

The expression on the left side of the double arrow is called a type context. Type
contexts are tuples of type predicate applications.

Qualified type expressions can be used to describe the types of member functions
of type classes. The types of the member functions of the type class Eq are:

(==) :: Eq a =>a ->a -> Bool
(/=) :: Eqa=>a->a-> Bool

Qualified type expressions can also be used to describe the type of functions that are
defined in terms of overloaded functions. For instance:

elem :: Eq a => a -> [a] -> Bool
x ‘elem‘ [] = False
x ‘elem‘ (y:ys) = if x==y

then True
else x ‘elem‘ ys

Functions defined in terms of overloaded functions are overloaded functions as well.
They are said to be implicitly overloaded.

Another purpose for which qualified type expressions can be used is type polymor-
phism restriction. Consider the following example of a polymorphic function:

id tra -> a
id x = x

106 Chapter 8. The programming language Gofer

As it is, this function is applicable to values of any type. We can restrict it to be
applicable only to values of types Bool and Int as follows:

class Id a
instance Id Bool
instance Id Int

id ::Id a=>a->a
idx = x

where Id is a type class without member functions. Defined in this way, the id
function displays restricted polymorphism instead of general polymorphism.

Contexts can be used, not only to qualify types, but also to qualify classes and
instances. Consider the following instance declaration:

instance (Eq a, Eq b) => Eq (a,b) where
(a,b) == (c,d) = a==c && b==d

In this declaration, the member function (==) appears in two different roles. As a
function on values of type (a,b) it is defined, but as a function of values of type a or
type b it is used. This second role presupposes that the types a and b are instances
of the type class Eq. This is expressed by the context (Eq a, Eq b) in the header,
which qualifies the instance declaration.

Contexts can also appear in the headers of classes. For example, consider the
following class declaration:

class (Eq a) => Elem a where

elem :: a -> [a]l -> Bool
x ‘elem‘ [] = False
x ‘elem‘ (y:ys) = if x==y

then True
else x ‘elem‘ ys

The function (==) which is used in the default member function definition presupposes
that the type a is an instance of type class Eq. This is expressed by the context Eq
a which qualifies the class declaration. The classes that appear in the context of a
qualified class declaration are called superclasses of the qualified class.

The variables that appear in the headers of type classes do not need to be ground
types, but may be type constructors of any arity. For instance, consider the following
class:

class Functor t where
map :: (a->b) >ta->tb

From the type declaration of the member function map in this class declaration, one
can infer that the variable t is a one-parameter type constructor. This variable can,
for instance, be instantiated with the list constructor [1 and with the optional type
constructor Opt as follows:

instance Functor [] where
map £ [] = [
map f (x:xs) = f x : map f xs

8.4. Type classes, overloading and polymorphism restriction 107

instance Functor Opt where
map f Undef = Undef
map f (Def x) = Def (f x)

Since variables in class headers are not restricted to 0-ary types, type classes are often
also called constructor classes in Gofer.

8.4.3 Varieties of polymorphism

As one can gather from this section and the foregoing, Gofer supports three forms of
polymorphism. These forms have in common that a single function name is used in
applications to different types. The differences between these forms concern the wide-
ness of the range of argument types and the number of function definitions associated
to the function name.

overloading In the case of overloading, the range of argument types to which the
function may be applied is limited. There are several function definitions asso-
ciated to the function name, one for each set of argument types to which the
function is applicable. Which of these definitions is used is determined by the
types of the actual arguments.

restricted polymorphism In the case of restricted polymorphism, the range of ar-
gument types is limited as in the case of overloading. But there is only one
function definition associated to the function name. This definition is used for
every set of actual argument types.

general polymorphism In the case of general polymorphism, the range of argument
types to which the function may be applied is unlimited. There is only one
function definition associated to the function name.

To illustrate the similarities and differences between the three forms of polymorphism,
we will give some alternative definitions of the function map.
Consider the following declarations of the type class Map and its instantiations.

class Map a b where
map :: (a -> b) -> [a] -> [b]
instance Map Bool Bool where

map £ [] = 0

map f (x:xs) = f x : map f xs
instance Map Int Int where

map £ [] = 0

map f (x:xs) = f x : map f xs

The member function map of the type class Map is an overloaded function. The range
of argument types to which it is applicable is limited to those for which an instance of
Map is defined: boolean functions and lists, and integer functions and lists. For each
of these sets of argument types a separate function definition is given.

Since the definitions of the member function in each instance declaration are the
same, we can replace them by a default definition in the class declaration.

class Map a b where
map :: (a -> b) -> [a] -> [b]

108 Chapter 8. The programming language Gofer

map £ [] = [

map f (x:xs) = f x : map f xs
instance Map Bool Bool
instance Map Int Int

Now, the function map is no longer overloaded, since there is only one function defini-
tion. Thus, overloading has been eliminated in favor of restricted polymorphism. We
could have defined map as a restricted polymorphic function equivalently as follows:

class Map a b
instance Map Int Bool
instance Map Bool Int

map :: Map a b => (a -> b) -> [a] -> [b]
map £ [] = 0
map f (x:xs) = f x : map f xs

The function map is no longer a member function of the type class Map, but is defined
separately. The context Map a b in the qualified type of map ensures that the range
of possible argument types remains limited to those for which instances of Map have
been declared.

If we remove the context from the type of map its restricted polymorphism is
transformed into general polymorphism:

map :: (a > b) > [a]l] —> [b]
map £ [] = 0
map f (x:xs) = f x : map f xs

The function map is no longer restricted to argument type for which instances are
defined, but may be applied to functions and lists of any type.

Gofer’s extended type system, supporting three varieties of polymorphism, is highly
expressive. Due to this type system, Gofer is very well suited for monadic program-
ming. The description of the monadic programming method given in the next section
will make ample use of Gofer’s type potentials.

Chapter 9

Programming with monads

9.1

9.2

9.3

9.4

9.5

9.6

Monads 110
9.1.1 Definition of monads L 0oL 110
9.1.2 Monads in Gofer 111
9.1.3 Example monads 112
9.14 Usingmonads o 114
Monad extensions Lo Lo oo 116
9.2.1 Example monad extensions 116
9.2.2 Using monad extensions 120
Monad transformers Lo Lo oL 121
9.3.1 Definition of monad transformers 122
9.3.2 Monad transformers in Gofer 122
9.3.3 Correspondence of monad transformers to base monads . . 123
9.3.4 Example monad transformers 124
9.3.5 Using monad transformers 128
Monad transformers and extensions 129
9.4.1 Example monad transformer extensions 129
9.4.2 Using monad transformer extensions 131
Monadic parsers L e 133
9.5.1 The parser monad transformer 133
9.5.2 The parser monad transformer and extensions 134
9.5.3 The parser extension, 134
9.5.4 Using the parser monad extension 136
9.5.5 Example 137
Monadic I/O o 138
9.6.1 Thel/Omonad 139
9.6.2 The I/O monad transformer 139
9.6.3 TheI/O extension 140
9.6.4 Interactive I/O 141

109

110 Chapter 9. Programming with monads

In this chapter, an account is given of the monadic programming methodology used
in the implementation of EvADE. Monads are programming constructs that allow
novel kinds of data hiding. They can be used to create highly structured functional
programs. The structure of these programs makes them easily adjustable, and allows
reuse of their components. Also, these programs can elegantly incorporate many
imperative programming features into a purely functional framework, and can be read
in an almost imperative way. As a result, monadic programs are powerful, yet readable
and simple to understand.

Section 9.1 explains what monads are in general, and lists a number of specific
monads. Section 9.2 shows how monads can be extended with additional functionality.
Sections 9.1.4 and 9.2.2 demonstrate by example how monads and monad extensions
are used.

Monad transformers are constructors that allow complex monads to be built from
base monads. Section 9.3 describes what monad transformers are in general, and lists
a number of specific monad transformers. Subsequently, section 9.4 shows how trans-
formed monads are extended with additional functionality, and how this functionality
is propagated through repeated transformations. Sections 9.3.5 and 9.4.2 demonstrate
by example how monad transformers are used to transform monads, and how extended
transformed monads are used.

Sections 9.5 and 9.6 give an account of monadic parsing and monadic I/O, respec-
tively.

Monads and monad transformers are notions that stem from category theory. How-
ever, no knowledge of category theory is needed to understand and apply monadic
programming methods. A good introduction to monadic programming is given by
Wadler in [Wad92]. A somewhat more formal account of monads can be found in
[Wad90]. Monad extensions and monad transformers were proposed as programming
techniques by Liang, Hudak and Jones [LHJ95]. In the present chapter, the vari-
ous concepts present in these sources have been accommodated into a single coherent
presentation. Also, a number of new concepts have been added. These new concept-
s include the unlift and insert functions on monad transformers, which will be
explained in section 9.3.

9.1 Monads

In this section we answer the question “What is a monad?”. We will first give a general
answer to this question, culminating in a definition of monads. Then we will answer
the question specifically, 1.e. by listing a number of particular monads. Finally, we
will show by example how a non-monadic function definition can be transformed to a
monadic one.

9.1.1 Definition of monads

A monad is a unary type constructor with associated functions that obey special
laws. More specifically, if we have a monad by the name M, we have functions of the
following names and types:

unit :a — M a

bind: Ma—(a— Mb —Mb
Jun :(a —b) = (M a— MYb)
join : M (M a)— M a

9.1. Monads 111

These functions must be defined in such a way that between them the following rela-
tionships hold:

bind m k = join(fun k m)

fun f m = bind m (Aa.unit(f a))

join m = bind m id

In fact, given these equations, it suffices to define only unit and bind, and to derive
fun and join, or, alternatively, to define only unit, fun, and join, and to derive bind.
We will opt for the first of these alternatives.

The monad functions must not only be of specific types and stand in particular
relationships to one another, but they must also obey a set of three monad laws. We
will express these laws in terms of unit and bind, though they can be expressed in
terms of unit, fun, and join just as well.

Left unit: (unit a) ‘bind'k = ka
Right unit: m ‘bind‘ unit = m
Associativity: m ‘bind‘ (Aa.(k a) ‘bind‘ (Ab.h b))
= (m ‘bind‘ (Aa.k a)) ‘bind‘ (Ab.h b)

Here we have adopted the Gofer convention of elevated commas to make bind usable
as an infix function.

Thus, monads are characterized by the functions defined on them, by the relation-
ships between these functions, and by the laws imposed on these functions. We can
summarize these characterizations in the following concise definition of monads:

Definition Any unary type constructor M on which the functions unit and bind
are defined in such a way that they obey the three monad laws, is a monad.

Again, this definition is formulated in terms of un:t, and bind, but could as well have
been formulated in terms of unit, fun, and join. The type requirements are implicit.

9.1.2 Monads in Gofer

Apart from the monad laws, the definition of monads can be expressed in Gofer by
the following constructor class Monad:

class Monad m where
unit :: a > m a
bind :: ma > (a->mb) >mb

fun :: (2 > b) -> (m a -> m b)

join ::m (ma) ->ma

m ‘bind¢ k = join (fun k m)

fun £ m = m ‘bind¢ \a -> unit (£ a)
join m =m ‘bind‘ id

The relationships between the monad functions appear in this constructor class as
default methods. When one declares an instance of this class, one can suffice by
defining either only unit and bind, or only unit, fun and join. The default methods
ensure that the remaining functions are thereby defined as well.

112 Chapter 9. Programming with monads

The monad laws can be expressed in Gofer-like syntax as follows:

Left unit: (unit a) ‘bind‘ k = k a
Right unit: m ‘bind‘ unit = m
Associativity: m ‘bind¢ (\a -> (k a) ‘bind‘ (\b -> h b))
= (m ‘bind‘ (\a -> k a)) ‘bind‘ (\b -> h b)

Note that in this formulation of the monad laws the meaning of the equivalence sign
‘=" is different from the meaning it has in Gofer. Whereas in Gofer this sign denotes
the rewrite relation, in the Gofer-like syntax used to formulate the monad laws, it
denotes the reflexive-transitive-symmetric closure of the rewrite relation, i.e. it denotes
convertibility.

9.1.3 Example monads

Now it has been laid down what monads are in general, it is time to present a few
example monads. From here on we will no longer use mathematical notation, but only
Gofer syntax (‘=’ denotes definitional equality) and Gofer-like syntax (‘=’ denotes
convertibility).

The identity monad

To begin with, we define a trivial monad:
data Id a = Id a
instance Monad Id where
unit x = Id x
(Id x) ‘bind‘ k = k x
This monad is called the identity monad, because the type constructor Id, the func-
tion unit and the function bind are isomorphic to the identity type constructor, the

identity function and plain — albeit postfix — function application, respectively. The
effect of this monad is to encapsulate exactly one value of type a.

The maybe monad

Our second example of a monad is also fairly simple.
data Maybe a = Just a | Nothing

instance Monad Maybe where

unit x = Just x
Nothing ‘bind‘ _ = Nothing
(Just a) ‘bind‘* k = k a

Whereas the identity monad always contains exactly one value of type a, the Maybe
monad may contain a value, 1.e. it encapsulates one value or no value at all.

9.1. Monads 113

The list monad

Our third example of a monad is again only slightly more complicated.

type List a = [al

instance Monad List where
unit x = [x]

m ‘bind* k = [b | a<-m, b<-kal

The list monad encapsulates not exactly one, or either one or zero, but any finite
number of values of type a. The unit function returns the singleton list. The bind
function is defined in terms of a list comprehension, which applies k to all values a
encapsulated in monad m, and gathers the results in a single list.

The exception monad

The following monad is similar to the Maybe monad, but has a useful extra.

data Expt e a = Fail e | Succ a

instance Monad (Expt e) where

unit = Succ
(Succ a) ‘bind‘* k = k a
(Fail e) ‘bind‘ k = Fail e

Like the Maybe monad, the Expt monad can contain one or zero values of type a.
But in the case of zero encapsulated values, the Maybe monad contains nothing at all,
whereas the Expt monad contains an exception of the type e.

The state monad

The state monad 1s defined as follows.

data State s a = State (s —> (s,a))
unState (State x) = x

instance Monad (State s) where
unit a = State (\s —> (s,a))

m ‘bind‘ k = State (\s -> let (s’,a) = (unState m) s
in unState (k a) s’)

The monad State is a function type constructor. The function involved maps a state
to a pair consisting of a new state and a value of type a. Hence, the state monad
might more appropriately be called a state transformer monad, but we will stick
to the shorter name. The auxiliary function unState provides a convenient way of
removing the tag State during operations on the state monad. Like the Id monad,
the State monad contains exactly one value of type a. The unit function encloses
this value inside an identity state transformer, which maps the old state unaltered to
the new state. The bind function first applies the state transformer enclosed in its

114 Chapter 9. Programming with monads

first argument m to an initial state s. The resulting value a and the new state s’
are fed to the state transformer enclosed in its second argument k. Hence, the bind
function has the effect of successively applying the two state transformers enclosed in
its arguments.

Above, five unary type constructors have been declared to be instances of the Monad
class, and appropriate member functions have been defined for them. However, these
declarations and functions do not guarantee by themselves that the type constructors
are indeed monads, 1.e. that their monad functions have the correct types, stand in the
proper relationships to one another, and obey the three monad laws. These matters
must be verified if we are to use these type constructors as monads.

These verifications need not all be done by hand. The inspection of the type
correctness of the monad functions can freely be left to the Gofer type checker. Further,
reliance on the default methods for fun and join ensures that the proper relationships
hold between the monad functions. Only the verification of the monad laws needs to
be done by hand!. The proofs are fairly straightforward. They are not left as an
exercise to the reader, but they are given in appendix A.

9.1.4 Using monads

In the foregoing subsections it has been explained what monads are in general, and a
number of specific monads has been listed. It is now time to consider an example of
monadic programming. We will call again upon our old friend the factorial function
to serve as an example.

We will start from a non-monadic definition of the factorial function, and transform
it into a monadic definition in several small steps. Consider the following definition:

fac :: Int -> Int
fac O = 1
facn = fac(n-1) *n

This definition is equivalent to the following:

fac :: Int -> Int

fac O = 1

facn = 1let x = fac(n-1)
in x * n

Here, a 1let construction has been inserted. This non-monadic definition can straight-
forwardly be transformed to the following monadic one:

fac :: (Monad m) => Int -> m Int
fac 0 = unit 1
facn = fac(n-1) ‘bind‘ \x —>

unit (x * n)
The transformation consists in the following changes:
e The result type Int has been encapsulated into a monad m.

e The return value 1 has been encapsulated into a unit monad.

1With some ingenuity, the proofs of the monad laws, once drawn up, can be type checked using
the Gofer type checker.

9.1. Monads 115

e The let construction has been replaced by a bind function.
e The return value (x * n) has been encapsulated into a unit monad.

In order to make the function definition more readable, we will use the operator >>=
as as synonym for bind, and return as as synonym for unit.

fac :: (Monad m) => Int -> m Int
fac O = return 1
facn = fac(n-1) >>= \x ->

return (x * n)

We can give this monadic definition an almost imperative reading: If the argument
is 0 then return the value 1, else assign the factorial of (n-1) to the variable x and
return x * n. In the sequel, we will also use the operator >>. With this operator the
expression m >>= _ -> n, can be abbreviated tom >> n.

In general, a non-monadic function definition can be changed into a monadic one
by first enclosing the return type by a monad, then embedding calls to monad-valued
functions into bind constructions, and finally enclosing all return values by insertion
of unit functions.

Note that the monadic factorial function is restricted polymorphic. Its type decla-
ration does not specify a specific monad, but uses a type variable m instead. The type
predicate Monad restricts the values of m to monads.

We will now show how the monadic factorial function is invoked, and to what values
it evaluates. When we use the function, we must resolve its restricted overloading
(otherwise, the Gofer interpreter will complain). This can be done by calling the
polymorpic factorial function from a non-polymorphic function as follows:

facM :: Int -> M Int
facM = fac

In this definition, the type constructor M is a specific monad, not a type variable
restricted to monads. For example, we can use the identity monad, the maybe monad
or the state monad in the position of M:

facld :: Int -> Id Int

facld = fac

facMaybe :: Int -> Maybe Int
facMaybe = fac

facState :: Int -> State Int Int
facState = fac

The specific monads Id, Maybe, and State have been supplied, so to speak, as values
of the type variable m.
We can now ask Gofer to evaluate the following expressions:

facld 5 ==> Id 120
facMaybe 5 ==> Just 120
unState (facState 5) 0 ==> (0,120)

116 Chapter 9. Programming with monads

Thus, depending on the particular monad used, the same function definition produces
differently encapsulated values. In general, a monadic function is independent of the
monad with which it i1s used. Consequently, the function and the monad can be
modified and extended independently.

The reader might wonder what is gained by making the factorial function monadic,
since it makes no use of the extra’s offered by the monads with which it is used. In
fact, as yet we do not even have the means for using these extras. The unit function
allows us to create monads. The bind function allows us to produce new monads from
old ones. But a quick inspection of the first two monad laws informs us that, starting
from unit monads, the bind function can only produce more unit monads. Thus, by
means of these two monad functions alone, we can never produce non-unit monads.
Clearly, we will need more functions, in addition to the standard ones, in order to
make use of the extras offered by monads. In the next section, we will introduce these
functions.

9.2 Monad extensions

The standard monad functions, unit, bind, fun, and join, suffice to make full use
of the monad only in case of the trivial identity monad. On the other monads, which
have non-unit forms as well as unit-forms, more functions need to be defined besides
the standard ones in order to capitalize on the features that set them apart from the
trivial monad. These extra functions will extend the functionality of the monads on
which they are defined. We will group the extra functions in type classes which we
will call monad extensions.

9.2.1 Example monad extensions

In the following, we will declare several monad extensions, and define instances of them
for some of the monads given in the previous section. Some of the monad extensions
given here are mentioned in passing in [LHJ95].

The zero extension

We can define a zero function on monads. Monads with this function defined on them
will be called zero-monads.

class Monad m => Monad0 m where
Zero ::oma

A zero-monad must obey the following zero laws:

Left zero: zero ‘bind‘ k = zero
Right zero: m ‘bind¢ (\a -> zero) = zero

The zero extension makes it possible to create a distinguished monad of a form which
is distinct from the unit form. From the two zero laws one can glean why this
distinguished monad is called a zero: it “nullifies” any monad to which it is bound.

A zero can not sensibly be appointed for every monad. In case of the identity
monad Id, for instance, all monads have unit form. Since zeros and units must be
distinct, no zero can be appointed among the identity monads.

9.2. Monad extensions 117

In case of the state monad State, there is no such lack of non-unit monads. How-
ever, all these non-unit monads encapsulate exactly one value of some type a. Since
the zero function has no arguments of this type, it is not possible to supply the value
to be encapsulated by the zero. Hence, no zero function can be defined for the State
monad.

In case of the Expt monad, non-unit monads are abundant. None of these encap-
sulates a value of type a — they are all of the form Fail e. Hence, they all qualify
as candidates to become the distinguished zero. However, any choice among them
would necessarily be arbitrary; none of the candidates is more suitable to become a
zero than any other. For this reason, it would be awkward to define a zero extension
for the exception monad.

None of these obstacles occur for our remaining monads: the Maybe monad and the
List monad. They both have a unique non-unit monad which contains zero values of
type a: Nothing and [], respectively. Hence, we will define zero extensions for both
these monads.

instance Monad0 Maybe where
zZero = Nothing

instance Monad0O List where
Zero = [

These instance declarations and function definitions do not suffice to establish that
Maybe and List are indeed zero-monads. It needs to be verified that the declared
functions are of the proper type, and that they obey the zero laws. The former can
be verified by the Gofer type checker. The proofs of the latter have been produced by
hand, and can be found in appendix A.

The availability of a zero for certain monads allows us to define a filter function on
them.

filter :: MonadOm => (a -> Bool) ->ma ->m a
filter pm = m ‘bind¢ \a ->
if p a

then (unit a)
else zero

This function filters out those monads that encapsulate a value of type a which satisfy
the given predicate p. Monads that do not satisfy the predicate are “nullified”.
We can also define a function sentinel on monads.

sentinel :: (MonadO m) => Bool -> m ()
sentinel True = nop
sentinel False = =zero

The function nop (‘no operation’) is a synonym for unit (). The sentinel function
takes a boolean argument, and returns a unit monad or a zero monad depending
on whether the argument is True of False. This function can be used to impose a
condition on the evaluation of a monad. Consider the following program fragment:

sentinel (x > 0) >>
m

118 Chapter 9. Programming with monads

Recall that n >> m abbreviatesn >>= _ -> m. Due to the sentinel, the monad m will
be evaluated only if the condition (x > 0) is satisfied. Otherwise, the zero monad
will be returned.

The plus extension

We can define a plus function (denoted by the infix operator || |) on monads. Monads
with this function defined on them will be called plus monads.

class Monad0 m => MonadPlus m where
(1) ::ma->ma ->mn a

The plus function is sometimes called “alternation”.
A plus monad must obey the following plus laws:

zero ||| m = m
m [I] zero = m
(a = zero /\ b = zero) iff (a ||| b = =zero)

As can be seen from the header of the type class declaration as well as from the plus
laws, the plus extension presupposes the zero extension. Thus, it is only sensible to
extend those monads to plus monads that have already been extended to zero-monads.
Thus, in our case, only the he Maybe monad and the List monad qualify. They are
extended as follows:

instance MonadPlus Maybe where
Just x ||l y = Just x
Nothing ||l y = ¥y

instance MonadPlus List where

arn = &+

The Gofer type checker establishes that these functions are of the proper type. In
appendix A the proofs are given that these extensions obey the plus laws.

The exception extension

We can define two functions raise and handle on certain monads, that enable us to
raise and handle exceptions. Monads with these functions defined on them are called
exception-monads.

class Monad m => ExptMonad e m where
raise :: e ->m a
handle :: ((¢e > ma), ma) > m a

The function raise takes an exception as argument and raises it. The function handle
takes a pair whose first element is a function, called exception handler, which maps
an exception to a monad. The second element of the pair is a monad. If an exception
is raised in this last monad, the function handle applies the exception handler to the
exception.

The monad most suited to be extended to an exception-monad is, not surprisingly,
the monad Expt. It is extended as follows:

9.2. Monad extensions 119

instance ExptMonad e (Expt e) where
raise e = Fail e
handle (h, (Succ a)) Succ a
handle (h,(Fail e)) h e

Other monads can be extended to become exception-monads. Only those monads
which have non-unit forms are eligible. For instance the Maybe monad and the List
monad can be extended as follows:

instance ExptMonad () Maybe where
raise () = Nothing
handle(h,Nothing) = h (O
handle(h, Just a) Just a

instance ExptMonad () List where

raise () = [
handle(h,[1) = h ()
handle(h,as) = as

Both these extensions result in somewhat degenerate exception-monads. The empty
type (), which has () as its only element, serves as exception type in both cases. Thus,
there is only one exception that can be raised, and no information can be transmitted
by 1it.

The state extension

On monads that have an internal state, such as the monad State, we can define the
functions inspect and update, which inspect and update the internal state, respec-
tively. Monads with these functions defined on them are called state-monads.

class Monad m => StateMonad s m where

update :: (s -> s) > m s
inspect :: m s
inspect = wupdate id

The argument of update is a function which maps the previous state to the next.
Apart from becoming the internal state, the new state is encapsulated as the value
of the resulting monad. The function inspect can simply be defined as the update
which transforms the internal state to itself, i.e. leaves 1t unaltered, and encapsulates
the unaltered state as value. Thus, inspect is by default defined in terms of update,
and instance declarations need only provide a definition of the latter.

The monad State can be extended to become a state-monad as follows.

instance StateMonad s (State s) where
update £ = State (\s -> let s’ = f s
in (s’,s’))

According to this definition the function £ is applied to the previous state. The state
thus obtained is encapsulated both as the next state of the resulting monad and as its
value.

120 Chapter 9. Programming with monads

9.2.2 Using monad extensions

To illustrate the use of monad extensions, we return to the example of section 9.1.4.
Recall the monadic definition of the factorial function:

fac :: (Monad m) => Int -> m Int
fac O = return 1
facn = fac(n-1) >>= \x —>

return (x * n)

We demonstrated the this definition could be used with different monads as instan-
tiations of m. However, the monadic features of these monads were not exploited by
the factorial function.

We can now proceed to enhance the functionality of the monadic factorial function
to by adding some of the monad extensions. For instance, we can place a sentinel in
the function, to detect negative arguments to the factorial function.

fac :: (Monad0 m) => Int -> m Int

fac O = return 1

facn = sentinel (n>0) >>
fac(n-1) >>= \x ->

return (x * n)

If we define facMaybe as in section 9.1.4, we can ask Gofer to evaluate the following
expressions:

facMaybe 5 ==> Just 120
facMaybe (-5) ==> Nothing

Whereas the original non-monadic function fac would produce a run-time error (due
to non-termination), the monadic function with the sentinel simply returns a zero
monad when presented with a negative argument.

Note that this addition of functionality to the factorial function did not require any
changes in the existing parts of the function definition. Also, the type of the function
remained unchanged. In general, adding functionality to monadic functions does not
affect existing code.

Another way to add to the functionality of the factorial function, is to let it keep
track of the number of multiplications it performs.

fac :: (StateMonad Int m) => Int -> m Int
fac O = return 1
facn = fac(n-1) >>= \x —>

update (1+) >>
return (x * n)

The internal state of type Int is updated by incrementing it by one. If we define
facState as above, we can ask Gofer to evaluate the following expression:

unState (facState 5) 0 ==> (5,120)

The first element of this pair is the multiplication count. The second element is the
factorial of 5.
These two separate extensions of the factorial function can also be combined:

9.3. Monad transformers 121

fac :: (Monad0 m, StateMonad Int m) => Int -> m Int
fac O = return 1
facn = sentinel (n>0) >>

fac(n-1) >>= \x ->

update (1+) >>
return (x * n)

Thus, both the sentinel and the multiplication counter are present in this definition of
the factorial function. From the type declaration we can deduce that the type variable
m is restricted to monads that are both zero-monads and state-monads.

Unfortunately, none of the monads defined in the foregoing are both zero-monads
and state-monads. Therefore, we can not yet make use of the factorial function with
both a sentinel and an update. Of course, a monad that is both a zero-monad
and a state-monad could be constructed. However, the construction of a new monad
would be required each time functionality is added, and at each step these monads
would become increasingly complex. Especially the definition of the standard and
non-standard monad functions for these complex monads would become unacceptably
laborious. To deflect these problems, a method will be presented in the next section to
construct new monads from old ones using monad transformers. Using this method,
no redefinition of functions will be needed to construct new monads.

9.3 Monad transformers

Each of the extended monads of the previous section has some particular feature,
which distinguishes it from other monads. When we want to combine features of
different monads, we need to create a new monad from scratch, and extend it with
the desired functionality. Thus, we need to define a new unary data constructor
which encapsulates in some way values, data and functions that are required to realize
the features we want. Further, we will need to declare the data constructor to be
an instance of the monad class, and define the standard monad functions unit and
bind on them. Next, we must, for each extension, declare the data constructor to
be an instance of the corresponding monad extension class, and define the additional
functions on them. Obviously, this method of combining features of monads is highly
laborious.

Combining monad features can be facilitated greatly by the use of monad trans-
formers. A monad transformer is a type constructor which takes a monad as argument
and yields a new monad. For each base monad described in section 9.1, a corresponding
monad transformer can be defined, which captures the same monad features. When
a monad transformer is applied to an arbitrary monad, this monad is enriched with
the features captured in the monad transformer.

Iterative application of monad transformers to an arbitrary monad results in a
monad in which both the features of the arbitrary monad as well as the features of
the applied monad transformers are accumulated. Thus, monad transformers serve as
basic building blocks with which customized monads can be created. Hence, monad
transformers allow different monad features to be combined in a single monad, without
demanding new data constructors or new monad functions to be defined.

In this section, we will first explain what monad transformers are in general. Sub-
sequently, we will explain the close correspondence of monad transformers with base
monads. Then, we will list the particular monad transformers, corresponding to the
base monads of section Monads. Finally, we will show how monad extensions are

122 Chapter 9. Programming with monads

defined for transformed monads, and we will demonstrate the use of extended trans-
formed monads by example.

Monad transformers are proposed as a programming technique in [LHJ95]. Some
of the monad transformers to be presented in section 9.3.4 were mentioned in that
article.

9.3.1 Definition of monad transformers

What are monad transformers? A monad transformer is a unary type constructor,
which takes a monad as argument and is monad-valued. Thus, if we have a mon-
ad transformer T, then for every monad M the application (7" M) is a monad as
well. Also, a number of functions obeying special laws are associated with monad
transformers.

The functions that are required to be defined on monad transformers have the
following names and types:

liftt :Ma—(TM)a
unlift : (T M)a— M a

The function /7 ft encapsulates a monad m into a transformed monad ¢m. The function
unlift recovers the original monad m from the transformed monad ¢m.
The monad transformer functions must obey a set of three monad transformer
laws.
Unit lift: lft (unit,, a) = unilyy, a
Bind lift: lift (m ‘bind, “ Aa.k a) = (lift m) ‘bindey,© (Aa. lUift (k a))
Unlift: unlift (lift m) = m

The subscripts have been added to assist the reader in resolving the overloading in-
volved in these formulas.

Thus, monad transformers are characterized by their kind, by the functions defined
on them, and by the laws imposed on these functions. We can summarize these
characterizations by the following definition:

Definition Any unary type constructor 7' which takes monads into monads, and
on which the functions lift and unlift are defined in such a way that they obey the
three monad transformer laws, is a monad transformer.

9.3.2 Monad transformers in Gofer

Apart from the monad transformer laws, the definition of monad transformers can be
expressed in Gofer by the following construction class MonadT:

class (Monad m, Monad (t m)) => MonadT t m where
lift :: ma -> tma
unlift :: tma ->ma

MonadT is a binary constructor class which expresses that its second argument m is a
monad, and that its first argument t transforms m into a new monad t m.
The monad transformer laws can be expressed in Gofer-like syntax as follows:

Umit lift: 1ift (unit a) = unit a
Bind lift: 1ift (m ‘bind‘ \a -> k a)

= (lift m) ‘bind¢ (\a —> 1lift (k a))
Unlift: unlift (lift m) = m

9.3. Monad transformers 123

Note that the names unit and bind are overloaded, and that the ‘=’ sign denotes
convertibility.

9.3.3 Correspondence of monad transformers to base monads

To each base monad which captures certain monad features, a monad transformer
corresponds which captures these same features. In fact, in section 9.3.4 we will
define each monad transformer in terms of its corresponding base monad.

Due to this correspondence, application of a monad transformer to an arbitrary
monad yields a monad which can be understood as a combination of the arbitrary
monad with the base monad corresponding to the monad transformer. Assume B
is a base monad, T is its corresponding monad transformer, and M is an arbitrary
monad to which the monad transformer will be applied. Since the monads B and M
are each encapsulations of values, the transformed monad (7" M) can be understood
as a two-layer encapsulation. The inner layer is provided by the base monad, while
the arbitrary monad envelops the base monad and provides the outer layer. We can
depict this situation by the following diagrams:

’ O, @

M a Ba (T M)a

Hence, the monad transformer 7' combines its corresponding base monad and the
arbitrary monad M in an asymmetrical way.

Because a transformed monad is a combination of a base monad and an arbi-
trary monad, it can be constructed by two distinct methods. The first method starts
from a base monad, and adds the arbitrary monad. The second method starts from
an arbitrary monad, and adds a base monad. These two methods can be depicted

symbolically as follows:
@ insert @

a lift @

As indicated by the labels of the arrows, the second method is implemented by the
function lift, which was introduced in the previous section. It is a standard function
on monad transformers, and has type M a — (T M) a. This function operates
by squeezing the unit of the base monad inside the arbitrary monad which is its

argument. The function which implements the first method has been given the name
insert. Its type is B a — (T M) a, where B is the base monad corresponding to
T. This function operates by wrapping a base monad inside the unit of the arbitrary
monad M.

In Gofer, the function lift was represented as the member function 1ift of the
class MonadT. We will represent insert as a member function of a class MonadI.

class (MonadT t m) => MonadIl t m b where
insert :: ba->tma

124 Chapter 9. Programming with monads

This class is a subclass of MonadT, as can be seen from the class header. The type
predicate MonadI T M B expresses that the monad transformer T corresponds to the
base monad B.

As was established above, a transformed monad is an asymmetrical combination
of a base monad and an arbitrary monad. Correspondingly, the standard monad
functions unit and bind for the transformed monad are asymmetrical combinations
of the standard monad functions for the base monad and the arbitrary monad. The
method of combination is very similar to the method for deriving a monadic function
from a non-monadic function, demonstrated in section 9.1.4. In that section, we
applied the method to transform the non-monadic factorial function of type Int ->
Int to a monadic factorial function of type Int -> M Int. In essence, the method
effects the encapsulation of the result values of a function inside an arbitrary monad M
by introducing the standard monad functions unit and bind for M. When we apply the
same method to the standard monad functions unit and bind for the base method,
which have typesa -> B aandB a -> (a -> B b) -> B b, we will obtain the unit
and bind functions for the transformed monad, which have typesa -> T M aand T M
a->(a->TMb) =>TM b. Thus, in the asymmetrical combination of standard
monad functions, the standard monad functions of the base monad play the role of
the functions whose result values are encapsulated, and the standard monad functions
of the arbitrary monad play the role of the functions that perform the encapsulation.
In the upcoming sections, this method will be applied.

9.3.4 Example monad transformers

Now it has been laid down what monad transformers are in general, it is time to present
a few example transformers. Each of these captures the same additional functionality
as one of the base monads from section Monads.

The maybe monad transformer

The maybe monad transformer corresponds to the maybe monad. To define the maybe
monad transformer we begin with the definition of the type constructor MaybeT in
terms of the type constructor Maybe:

MaybeM (m (Maybe a))
m

data MaybeT m a
unMaybeM (MaybeM m)

The type constructor MaybeT is formed by enclosing the constructor Maybe inside an
arbitrary monad m and adding a tag MaybeM. Thus, the maybe monad transformer
combines the maybe monad and and arbitrary monad in an asymmetrical way. The
auxiliary function unMaybeM provides a convenient way of removing the tag from the
transformed monad, to facilitate the use of the monad transformer.

The definition of the type constructor MaybeT alone does not suffice to define the
maybe monad transformer. It must be supplemented instance declarations of the three
classes Monad, MonadT, and MonadI. The first of these instance declarations asserts that
transforming an arbitrary monad by MonadT again yields a monad:

instance (Monad m) => Monad (MaybeT m) where
unit a = MaybeM (unit (Just a))
m ‘bind‘ k = MaybeM (unMaybeM m ‘bind‘¢ \maybea ->
case maybea of

9.3. Monad transformers 125

Just a —> unlMaybelM (k a)
Nothing -> unit Nothing)

Note that the names unit and bind are overloaded. In the left hand side they denote
the standard monad functions of the transformed monad. In the right hand side they
refer to the standard monad functions of m. In the body of this instance declaration,
the former are defined in terms of the latter.

These function definitions have been obtained from the standard monad functions
for Maybe by applying the method of transforming non-monadic functions to monadic
ones. Recall the definition of unit and bind for Maybe.

unit a = Just a
Nothing ‘bind¢ _ = Nothing
(Just a) ‘bind‘ k = k a

We can rewrite the definition of bind as follows:

m ‘bind‘ k = let maybea = m
in case maybea of
Nothing -> Nothing
Just a > (k a)

By introduction of the unit and bind for m, the return value of these functions can
be encapsulated in the monad m:

unit a unit (Just a)
m ‘bind‘ k¥ = m ‘bind‘ \maybea —>
case maybea of
Just a > (k a)
Nothing -> unit Nothing

To these definitions we only need to add the tag MaybeM and the untagging function
unMaybeM in the appropriate places to obtain the definitions of unit and bind for
MaybeT, as they were given in the instance declaration above.

The second instance declaration that needs to be given declares the type construc-
tor MaybeT to be a monad transformer:

instance (Monad m, Monad (MaybeT m)) => MonadT MaybeT m where

lift m = MaybeM (m ‘bind‘¢ \a —>
unit (Just a))
unlift tm = (unMaybeM tm) ‘bind‘ \maybea ->

case maybea of
Just a -> unit a
Nothing -> error "Tried to unlift Nothing"

Recall that the task of the 1ift function it to squeeze the unit of the base monad
Maybe inside the arbitrary monad which is its argument. To perform this task, the
unit and bind of the monad m are used. The function unlift reverses the effect of the
1lift function, if possible. If not, a run-time error is generated. The third monad law,
called ‘Unlift’ guarantees that application of unlift immediately after 1ift is always
successful. Tags and untagging functions have been added in appropriate places.

To complete the definition of the maybe monad transformer, we give the following
instance declaration:

126 Chapter 9. Programming with monads

instance MonadI MaybeT m Maybe where
insert maybea = MaybeM (unit maybea)

This instance declaration expresses the correspondence of MaybeT with Maybe. The
function insert envelops the base monad inside the unit of the monad m, and tags it
with MaybeM.

The exception monad transformer

The monad transformer corresponding to the exception monad is the exception monad
transformer. The definition of this monad transformer proceeds along exactly the same
lines as the definition of the maybe monad transformer. First, a type constructor
ExptT is defined, and subsequently three class instances are declared for this type
constructor.

The type constructor ExptT is formed by enclosing the constructor Expt inside an
arbitrary monad m and adding a tag ExptM, as follows:

data ExptT e m a = ExptM (m (Expt e a))
unExptM (ExptM m) m

Thus, the exception monad transformer combines the exception monad with an arbi-
trary monad m. The auxiliary function unExptM provides a convenient way of removing
the tag from the transformed monad.

The first instance declaration asserts that application of the exception monad
transformer to an arbitrary monad yields a monad again:

instance Monad m => Monad (ExptT e m) where
unit a = ExptM (unit (Succ a))
m ‘bind‘ k = ExptM (unExptM m ‘bind‘ \expta ->
case expta of
Succ a —> unExptM (k a)
Fail e -> unit (Fail e))

The definitions of unit and bind in this instance declaration are derived from the
unit and bind of the base monad Expt. This derivation is exactly analogous to the
derivation of the standard monad functions for MaybeT.

The second instance declaration asserts that ExptT e is a monad transformer.

instance (Monad m, Monad (ExptT e m)) => MonadT (ExptT e) m where

lift m = MaybeM (m ‘bind‘¢ \a —>
unit (Succ a))
unlift tm = (unExptM tm) ‘bind‘ \expta ->

case expta of
(Succ a) -> unit a
(Fail e) -> error "Exception was raised, but not handled"

The function 1ift squeezes Succ, which is the unit of the base monad Expt inside
the arbitrary monad m. The function unlift reverses the effect of 1ift, if possible.
In case an exception is encountered, unlifting is not possible, and an run-time error is
generated.

The final instance declaration for ExptT establishes the correspondence between
this monad transformer and the base monad Expt.

9.3. Monad transformers 127

instance MonadI (ExptT e) m (Expt e) where
insert expta = ExptM (unit expta)

The function insert encapsulates the base monad inside an arbitrary monad m.

The state monad transformer

The monad transformer that corresponds to the state monad is the state monad trans-

former. Like the maybe monad transformer and the exception monad transformer, its

definition consists of a data constructor definition and three instance declarations.
Recall the definition of the type constructor State.

data State s a = State (s —> (s,a))

Leaving the tag State out of consideration, this type constructor forms the basis of
the constructor StateT:

data StateT s m a
unStateM (StateM m)

StateM (s -> m (s,a))
m

Due to the fact that the base monad is a function type in stead of a ground type,
this definition is a bit trickier than the definitions of MaybeT and ExptT. In this case,
the arbitrary monad m encapsulates not the base monad in its entirety, but only its
result type (s,a). This is in complete accordance with the method for transforming
non-monadic functions into monadic ones, which was demonstrated in section 9.1.
According to this method, the return values and return types of functions must be
encapsulated to make them monadic. Hence, the derivation of the monad transformer
StateT from the base monad State is slightly more general, but not essentially dif-
ferent from the derivation of the other monad transformers from base monads.

The following instance declaration asserts that transforming an arbitrary monad
by the state monad transformer yields again a monad.

instance Monad m => Monad (StateT s m) where
unit a StateM (\s —> unit (s,a))
m ‘bind‘ k StateM (\s -> unStateM m s ‘bind‘ \(s’,a) —>
unStateM (k a) s’)

The definitions of the unit and bind for the transformed monad StateT s m are
derived from the definitions of these same functions for the base monad State s.
This derivation is again slightly more general than in the case of the maybe monad
transformer and the exception monad transformer. The additional generality i1s due
to the fact that functions in stead of ground values are involved. In accordance of the
method of making functions monadic, these functions are not encapsulated in their
entirety in the monad m, but only their result values.

The second instance declaration for StateT asserts that it is indeed a monad
transformer:

instance (Monad m, Monad (StateT s m)) => MonadT (StateT s) m where

lift m = StateM (\s -> m ‘bind‘ \a —>
unit (s,a))
unlift tm = (unStateM tm) undefined ‘bind‘¢ \(s,a) —>

unit a

128 Chapter 9. Programming with monads

Again, some additional generality is present in these definitions. The unit of the base
monad State is the function \s -> (s,a) (disregarding the tag State). The lift
function squeezes not this entire function inside the arbitrary monad m, but only its
result value (s,a). The unlift function reverses the effect of the lift function. To
do this, it supplies an undefined initial state to the transformed monad. Hence, if
one tries to unlift a transformed monad which inspects its state before initializing it
properly, a run-time error will result.

The definition of the state monad transformer is completed with the following
instance declaration:

instance MonadI (StateT s) m (State s) where
insert b = StateM (\s -> unit (unState b s))

This instance declaration reflects the correspondence of the state monad transformer
to the base state monad. The function insert envelops the result value of the base
monad with the unit of the aribitrary monad m (while removing the tag State). This
instance declaration concludes the definition of the state monad.

9.3.5 Using monad transformers

We will now explain how monad transformers can be used to combine monads into
larger monads. In section 9.1.4, the base monad State Int and the base monad
Maybe were used seperately. These monads can be combined into a single monad in
four distinct ways. The first way consists in transforming the maybe monad with the
state monad transformer:

type M = StateT Int Maybe

The resulting monad M provides the state monad as inner encapsulation and the maybe
monad as outer encapsulation. The converse transformation consisits in transforming
the state monad with the maybe monad transformer:

type M = MaybeT (State Int)

In this case, the maybe monad is the inner encapsulation, while the state monad is
the outer encapsulation.

Both these methods of creating a combined monad and maybe monad perform a
single transformation on a base monad. Alternatively, we can take the identity monad
as base monad, and apply two transformations to 1t. This can be done in two ways:

type M = StateT Int (MaybeT Id)
type M = MaybeT (StateT Int Id)

These two monads are isomorphic to the ones above. The only difference is the extra
enveloping encapsulation provided by the identity monad.

From these last two methods of combining monads, one can conclude that one
could do away with all base monads except the identity monad. All complex monads
are then created by succesive transformations of the base monad. However, these
resulting monads have an additional encapsulation which needs to be peeled away and
re-installed constantly during monad operations. Therefore, we will keep the base
monads to be able to avoid this decrease of efficency.

Monad transformers can be used to combine features of different base monads inside
a single complex monad. Unfortunately, we can as yet not use the monad features

9.4. Monad transformers and extensions 129

present inside these transformed monads. We first need to define the monad extensions
corresponding to these features for each of the monad transformers.

9.4 Monad transformers and extensions

On the monads produced by applying monad transformers to monads only the stan-
dard monad functions (unit and bind) and the monad transformer functions (1ift
and unlift) are defined. The monad extension functions, such as zero, |||, raise
and update now need to be defined on them.

9.4.1 Example monad transformer extensions
The zero extension

The zero extension interacts with monad transformers in two ways. Firstly, the maybe

monad transformer adds zero functionality to an arbitrary monad. Secondly, other

monad transformers propagate this functionality from monads to transformed monads.
The first interaction is expressed as follows:

instance (Monad m) => Monad0 (MaybeT m) where
zero = MaybeM (unit Nothing)

Thus, transforming a monad by MaybeT produces a zero-monad.
The second interaction between the zero extension and monad transformers is
expressed as follows:

instance (Monad0 m, MonadT t m) => Monad0 (t m) where
zZero = 1lift zero

Thus, when a monad transformers is applied to a zero monad, the resulting monad
is a zero monad as well. The zero function of the transformed monad is defined in
terms of the zero function of the underlying monad. To produce a transformed zero,
it 1s sufficient to lift the underlying zero.

The plus extension

The plus extension interacts with monad transformers in two ways as well. Firstly, the
maybe monad transformer adds plus functionality to an arbitrary zero-monad. This
interaction is expressed as follows:

instance (Monad m) => MonadPlus (MaybeT m) where
tml ||| tm2 = MaybeM (unMaybeM tmil ‘bind‘¢ \x ->
case x of
Just a -> unit (Just a)
Nothing -> unMaybeM tm2)

The definition of the member function ||| is derived from the definition of ||| for
the base monad Maybe by making it monadic with respect to m.

The plus extension interacts with monad transformers in a second way. When a
plus monad is transformed by the state monad transformer or the exception monad
transformer, the resulting monad is a plus monad as well. Lifting the plus function
through monad transformers can not be done generically for all monad transformers,
as was done for the zero monad. Naively, one might propose the following definition:

130 Chapter 9. Programming with monads

instance (MonadPlus m, MonadT t m) => MonadPlus (t m) where
tm ||| tn = 1ift ((unlift tm) ||| (unlift tn))

However, this definition will not do. The unlift functions ruthlessly strip away
the encapsulation, and discard any information that i1s represented by it. After the
application of the underlying plus, the 1ift function merely adds a null-layer to the
resulting underlying monad. Thus, information is lost in the process of unlifting an
lifting. Consequently, to lift the plus function through monad transformers, we can
not make use of the monad transformer functions 1ift and unlift.

Instead, the lifting of the plus function must be performed non-generically, i.e.
seperately for each monad transformer. The appropriate declarations for the monad
transformers StateT and ExptT are as follows.

instance (MonadPlus m) => MonadPlus (StateT s m) where
(StateM x) ||| (StateM y) = StateM (\s -> (x s) ||| (y s))

instance (MonadPlus m) => MonadPlus (ExptT b m) where
(ExptM x) ||| (ExptM y) = ExptM (filtr nofail (x |I| y))
where nofail (Succ _) = True
nofail (Fail _) = False

In these definitions, no use is made of the generic functions 1ift and unlift for
state monad transformers and exception monad transformers. Thus, the problem of
losing information that occured in the naive definition is avoided. Note that it is
not sensible to lift the plus extension through the maybe monad transformer. The
reason for this is that an underlying plus monad must already have zero functionality,
since the zero extension is presupposed by the plus extension. Applying the maybe
monad transformer to a monad which already has zero functionality does not add any
additional functionality.

The state extension

The interaction of the state extension with monad transformers is twofold. In the
first place, when a state monad is transformed by an arbitrary monad transformer,
the resulting monad is a state monad as well. This is expressed by the following
declaration.

instance (StateMonad s m, MonadT t m) => StateMonad s (t m) where
update f = 1lift (update f)

The update function of the transformed monad is defined in terms of the update
function of the underlying monad. To update the transformed monad, the underlying
monad is updated and subsequenlty lifted.

The second interaction of the state extension and the state monad transformer is
expressed by the following instance declaration:

instance Monad m => StateMonad s (StateT s m) where
update f = StateM (\s -> unit (s’,s’))
where s’ = f s

Thus, the transformation of an arbitrary monad by the state monad transformer
results in a tranformed monad that is a state monad. The update function of the
transformed monad is defined in terms of the standard monad function unit of the
underlying monad.

9.4. Monad transformers and extensions 131

The exception extension

The interaction of the exception extension with monad transformers is twofold as
well. On the one hand, transformation of an exception monad by an arbitrary monad
transformer results in a transformed monad that is an exception monad as well. On the
other hand, transformation of an arbitrary monad by the exception monad transformer
also results in a monad that is an exeception monad. The first interaction can not be
expressed generically, due to problems similar to those that prevented the plus function
to be defined generically. This time the handle function is problematic. Naively, one
could make the following declaration:

instance (MonadT t m, ExptMonad b m) => ExptMonad b (t m) where
raise = 1lift . raise
handle (f, tm) = 1ift (handle (\b —> unlift (f b), unlift tm))

Unfortunately, this declaration will not do. The subsequent unlifting and lifting of
tranformed monads will generally result in unacceptable loss of information. There-
fore, a generic solution is not available, and the handle function will have to be lifted
through every monad transformer individually. For the state and exception monad
transformers, the appropriate definitions are as follows.

instance (MonadT (StateT s) m, ExptMonad b m)
=> ExptMonad b (StateT s m) where
raise = 1lift . raise
handle (f, m) = StateM (\s -> handle (\b -> unStateM (f b) s,
(unStateM m) s))

instance (MonadT MaybeT m, ExptMonad b m)
=> ExptMonad b (MaybeT m) where
raise = 1lift . raise
handle (£, m) MaybeM (handle (\b -> unMaybeM (£ b),
unMaybe m))

The unproblematic function raise is defined in terms of the generic function 1ift.
The problematic function handle is defined without the help of 1ift or unlift.

The second form of interaction between the exception extension and monad trans-
formers is expressed as follows.

instance Monad m => ExptMonad b (ExptT b m) where
raise = ExptM . unit . Fail
handle (h, (ExptM c)) = ExptM (¢ ‘bind‘ \a ->
case a of
(Succ x) -> unit a
(Fail y) -> (unExptM . h) y)

Thus, when an arbitrary monad is transformed by ExptT, an exception monad results.
The exception functions raise and handle of this exception monad are defined in
terms of the standard monad functions unit and bind of the underlying monad.

9.4.2 Using monad transformer extensions

We will now return to the example of the monadic factorial function to demonstrate
the use of monad transformers. Recall the last definition of this function:

132 Chapter 9. Programming with monads

fac :: (Monad0 m, StateMonad Int m) => Int -> m Int
fac O = return 1
facn = sentinel (n>0) >>

fac(n-1) >>= \x ->

update (1+) >>
return (x * n)

This definition makes use of the sentinel function, which requires m to be a zero-
monad, and the update function, which requires m to be a state-monad. To be able to
use this definition of the factorial function, we need to construct a monad that is both
a zero-monad and a state-monad. In section 9.3.5 four methods to construct such a
monad have been demonstrated. In this section, we will use only the first two of these
methods.

The Maybe monad is a zero-monad. We can add state functionality to it by trans-
forming it with the state monad transformer.

type M = StateT Int Maybe
Using this monad, we can define:

facM :: Int -> M Int
facM = fac

And ask Gofer to evaluate:

unStateM (facM 5) 0 ==> Just (5,120)
unStateM (facM (-5)) 0 ==> Nothing

Thus, a non-negative argument n result in a monad that encapsulates the number of
multiplications and the factorial of n. A negative argument results in a zero monad
that encapsulates no multiplication statistics.

Alternatively, we can transform the base monad State with the MaybeT monad
transformer. In this way, zero-functionality as added to the state monad which has
state-functionality.

type M = MaybeT (State Int)
Defining the function facM as above, we can evaluate the following expressions:

unStateM (unMaybeM (facM 5)) 0 ==> (5,Just 120)
unStateM (unMaybeM (facM (-5))) O ==> (0,Nothing)

Hence, a non-negative argument results again in a monad that encapsulates both the
answer and the multiplication count. A negative argument results in a zero monad
that encapsulates multiplication statistic.

The difference between the two strategies can be described as follows. In the first
case, the arisal of a zero annulls the interal state, while in the second case the internal
state is not affected by the arisal of a zero.

In the course of this chapter, the following steps were required to design the monadic
factorial function:

e Transform the non-monadic function definition to a monadic one according to
the standard method of making functions monadic.

9.5. Monadic parsers 133

e Add a sentinel to the function definition.
e Add an update to the function definition.

e Construct a monad with both zero and state-functionality by transformation of
a base monad.

The additions of monadic functionality to the function were all done without alter-
ing existing code. The construction of the complex monad did not involve defining
any additional monad functions. Hence, the monadic programming method allows
functional programs to be organized into highly independent parts.

9.5 Monadic parsers

In this section we will define a parser monad transformer, and a parser monad exten-
sion. We will also show how a parser monad transformer can be simulated by a state
monad transformer.

9.5.1 The parser monad transformer

First we define the following type constructor and an associated function:

data ParserT m a ParserM (String -> m (a,String))

unParserM (ParserM x) = x

Thus, a monad containing values of type a is transformed into a monad which depends
on an input string and contains both a value of type a and the rest of the input string.
The type constructor ParserT is very similar to the type constructor StateT. In fact,
the former is isomorphic to the latter instantiated with String as the state type. Due
to this isomorphism we will later be able to simulate the parser monad transformer
by a state monad transformer.

Second, we make two instance declarations to assert that ParserT is a monad
transformer:

instance (Monad m) => Monad (ParserT m) where
unit x = ParserM (\s —> unit (x,s))

m ‘bind‘ k = ParserM (\sO -> unParserM m sO ‘bind¢ \(a,s1) —>

unParserM (k a) si)

instance (Monad m, Monad (ParserT m)) => MonadT ParserT m where

lift m = ParserM (\s -> m ‘bind‘ \x ->
unit (x,s))
unlift tm = (unParserM tm) undefined ‘bind‘ \(a,s) ->
unit a

The first of these declarations asserts that application of ParserT to a monad indeed
results in a new monad. The second declaration asserts that ParserT is a monad
transformer. To substantiate these assertions, we need to invoke the help of the Gofer
type checker to check that all member functions are of appropriate type, and we
need to prove that the monad laws and monad transformer laws are respected by the
function definitions. These proofs can be found in appendix A.

The definitions of unit and bind for the monad transformer ParserT are com-
pletely isomorphic to those for the monad transformer StateT.

134 Chapter 9. Programming with monads

9.5.2 The parser monad transformer and extensions

The parser monad transformer can be lifted through the monad extensions defined in
the foregoing sections. Some of these liftings are generic; others must be performed
seperately for each monad transformer.

The zero extension In section 9.4.1 generic liftings of monad tranformers through
the zero extension and through the state extension were given:

instance (Monad0 m, MonadT t m) => Monad0 (t m) where
Zero = 1lift zero
iszero tm = iszero (unlift tm)

instance (StateMonad s m, MonadT t m) => StateMonad s (t m) where
update f = 1lift (update f)

These generic liftinsg work for all monad transformers, including the parser monad
transformer. They ensure that any zero-monad transformed by the parser monad
transformer is a zero-monad, and that any state-monad transformed by the parser
monad transformer is a state-monad.

The plus, state, and exception extension Lifting the plus-monads and exception-
monads through monad transformers could not be done generically, as was explained
in section 9.4.1. Thus, we need to lift these monad extensions through ParserT seper-
ately:

instance (MonadPlus m) => MonadPlus (ParserT m) where
(ParserM p) ||| (ParserM q) = ParserM (\s -> (p s) ||| (q s))

instance (MonadT ParserT m, ExptMonad b m)
=> ExptMonad b (ParserT m) where
raise = 1ift . raise
handle (f,m) = ParserM (\s -> handle (\b -> unParserM (f b) s,
(unParserM m) s))

The non-problematic function raise is lifted generically using the generic function
1ift, which necessitates the apearance of the type predicate MonadT in the second
instance declaration header. The function handle is raised non-generically.

9.5.3 The parser extension

We can define the following functions on some monads:
e lookahead Inspects the input string without consuming any input.
e sat Parses the first character in the input string if it satisfies a given condition.

e eatwhile Parses the longest initial portion of the input string in which all char-
acters satisfy a given condition.

e initparse Initializes a parser with an input string.

e sp Applies a parser after removing leading spaces from the input string.

9.5. Monadic parsers 135

e endofile Is a parser which succeeds only if the end of the input stream 1is
reached.

A monad with these functions defined on it is called a parser-monad.

class (MonadPlus m) => ParserMonad m where
lookahead :: m String

sat :: (Char -> Bool) -> m Char
eatwhile :: (Char -> Bool) -> m String
initparse :: String -> m ()

sp irma->ma

endoffile :: m ()

sp p = eatwhile isSpace >> p

endoffile = filter null lookahead

The functions sp and endoffile are defined using default definitions. Hence, instances
of this class will only need to provide definitions of the first four functions.

Interaction of the parser extension with monad transformers The parser
extension interacts with monad transformers in two ways. Firstly, the transformation
of a parser-monad by a monad transformer produces a parser-monad. The lifting of
the parser extension through monad transformers can be done generically.

instance (ParserMonad m, MonadT t m) => ParserMonad (t m) where

lookahead = 1ift lookahead
sat = 1lift . sat
eatwhile = 1lift . eatwhile
initparse = 1lift . initparse

Secondly, transformation of an arbitrary zero-monad by the parser monad transformer
yields a parser-monad.

instance (Monad0 m) => ParserMonad (ParserT m) where
lookahead = ParserM (\s -> unit (s,s))
ParserM (\s —> case s of
(h:ts) -> if c h
then unit (h,ts)
else zero
_ -> zero)
ParserM (\s -> let (xs,ys) = span c s
in unit (xs,ys))
initparse s = ParserM (_ -> unit ((),s))

sat ¢

eatwhile ¢

The span function maps a predicate p and a list 1 to the pair of lists of which the
first one is the largest initial segment of 1 of which all elements satisfy p. The second
member of the pair is the remaining segment of the list.

Thus, the parser monad transformer ParserT transforms a zero-monad into a
parser-monad. But ParserT is not the only monad transformer that can have this
effect. Due to the similarity of the state monad transformer StateT to the parser
monad transformer ParserT, the latter can be simulated by the former. This is done
by taking String as the state type of the state monad transformer, and define the
parser functions in terms of the state functions inspect and update.

136 Chapter 9. Programming with monads

instance StateMonad String m => ParserMonad m where

lookahead = 1inspect
sat ¢ = inspect >>= \s ->
case s of

(h:ts) > if ¢ h
then update (_ -> ts) >>
unit h
else zero
_ -> zero
inspect >>= \s ->
let (xs,ys) = span ¢ s
in update (const ys) >>
unit xs
initparse s = wupdate (const s) >> nop

eatwhile ¢

Although a seperate parser monad transformer can be simulated by the state monad
transformer, we will not discard it, because a dedicated parser monad transformer is
more efficent.

9.5.4 Using the parser monad extension

Using the standard and some non-standard monad functions, the auxiliary monad
functions and the parser functions, we can construct parsers. We can classify these
functions into two categories: basic parsers, and parser constructors. The basic parsers
serve as raw material from which more complex parsers are constructed by the parser
constructors. From a given parser the parser constructors build new, more complex,
parsers.

The parser functions lookahead, sat, eatwhile, and endoffile are basic parsers.
The parser functions sp and initparse are parser constiructors.

The standard monad function unit (or its synonym return) is also a basic parser:
the parser that returns a given value without consuming any input. The standard
monad function bind (or its synonym >>=) is a parser constructor: from two parsers
p and q it builds a new parser that first performs p, followed by q.

The non-standard monad function zero is a basic parser: the parser that consumes
no input and fails. The non-standard monad function | | | is a parser constructor: from
two parsers p and q it constructs a new parser that succeeds if p or q succeeds.

The auxilliary monad functions many and many1 are also parser constructors. From
the parser p they constuct a parser that performs p 0 or more times (1 or more in the
case of many1) and return the results in a list. The auxilliary function seq takes a
list of parsers, and performs them one after another. The auxilliary monad function
maybe is a monad transformer that performs the parser p and returns its result tagged
with Just if it succeeds, and returns Nothing if it fails. The auxilliary function nop
is the basic parser that consumes no input and succeeds.

Using these basic parsers and parser constructors, we can build more complex parsers.
For instance, the parser tok parses a given token:

tok :: (ParserMonad m) => String -> m ()
tok t = seq [sat (c==) | ¢ <-t 1]

The parsers digit and number parse a digit and a natural number respecively:

9.5. Monadic parsers 137

number, digit :: (ParserMonad m) => m Int
number manyl digit ‘do‘ foldll (\a x -> 10%a+x)
digit sat isDigit ‘do‘ \d -> ord d - ord 0’

The function do is a infix version of fun. The parser ident parses identifiers consisting
of lower case letters:

ident :: (ParserMonad m) => m String
ident = manyl (sat isLower)

We can also build additional parser constructors. For instance, the parser constructor
parenthesised performs a parser p after parsing an opening parenthesis and followed
by parsing a closing parenthesis:

parenthesised :: (ParserMonad m) => m a -> m a
parenthesised p = tok "(" >>

P >>= \a ->

tok ")" >

return a

Using the parsers and parser constructors defined so far, we can build parsers for a
wide range of grammars.

9.5.5 Example

We will now give an example. Consider the following BNF syntax description for
arithmetic expressions:

expression — number | (expression) | unairy operator expression |
expression binairy operator expression

unary operator — -
binary operator — + | -

Based on this syntax description, the type of a parse tree for such expressions can be
designed.

= Num Int
| Unary UnaryOperator Expression
| Binary Expression BinaryOperator Expression

data Expression

data UnaryOperator = Neg
data BinaryOperator = Plus | Minus

Using the monadic parser functions, we can construct a parser for our example gram-
mar which produces parse trees of type Expression. This can be done as follows:

parseExpression :: PM Expression

parseExpression = (number >>= \int ->
return (Num int))
Y
(parseUnaryOperator >>= \unop ->
parseExpression >>= \expr ->
return (Unary unop expr))

138 Chapter 9. Programming with monads

(parseExpression >>= \exprl ->
parseBinaryOperator >>= \binop ->
parseExpression >>= \expr2 ->

return (Binary exprl binop expr2))

parseUnaryOperator :: PM UnaryOperator
parseUnaryOperator = tok "-" >> unit Neg
parseBinaryOperator :: PM BinaryOperator

(tok "+" >> unit Plus)
[1]

(tok "-" >> unit Minus)

parseBinaryOperator

However, this parser is non-terminating for certain expressions. This is due to the
left recursiveness present in the third alternative of our example grammer. A simple
solution exists to remove this left recursiveness. This solution is offered by the parser
operator || |=, which is defined as follows:

plll=pc = p Il (pcp)

We use this operator to make a subtle modification to our expression parser:

parseExpression = ((number >>= \int ->
return (Num int))
11

(parseUnaryOperator >>= \unop ->

parseExpression >>= \expr ->
return (Unary unop expr)))
[11=\p —>
(p >>= \exprl ->
parseBinaryOperator >>= \binop ->
parseExpression >>= \expr2 ->

return (Binary exprl binop expr2))

In this definition, the third alternative is connected with the first two by ||]= in
stead of ||]. In the third alternative, the left recursive call to parseExpression is
supplanted by p. The result of these modifications is that not the entire expression
parser is called recursively, but only the parser for the first two alternatives. As a
result, binary operators become right-associative.

9.6 Monadic I/0

In this section, we will discuss monadic input and output. We define an I/O monad
and an monad transformer. We present an I/O extension, and extend both the monad
and monad transformer by it. The we will discuss the use of the I/O monad and monad
transformer for interactive I/0, i.e. processes where output is generated while not all
input has yet been received. As it will turn out, the I/O monad is suited for interactive
I/0O, but the monads created with the I/O monad transformer are not.

9.6. Monadic I/O 139

9.6.1 The I/O monad

To define the I/O monad we start by creating the following type constructor, and an
associated function:

data I0 a
unI0 (IO x)

I0 (String -> (a,String,String->String))
x

As can be seen from this definition, the I/O monad contains a function with argument
type String. This string represents the input to the program. The result type is
the triple (a,String,String->String). Here, the first member a is the value of the
monad. The second member of type String represents the remainder of the input.
The third member of type String->String is a function which maps the rest of the
output to the complete output of the program.

We declare this /O type constructor to be a monad.

instance Monad IO where
unit x = I0 (\i > (x,i,\0->0))
m ‘bind‘ k = I0 (\i0 —> let (a,il,o01) = (unIO m) i0
(b,i2,02) = (unI0 (k a)) il
in (b,i2,01.02))

The unit function encapsulates a value of type a. Additionally, it transfers the input of
the program to the rest of the program without consuming any of it, and it propagates
the output of the rest of the program without adding to it. The definition of the bind
function involves three input streams: i0 is the input to the entire monad m ‘bind*
k, i1 is the input which remains after the first monad m, and which is subsequently fed
to the second monad k a. The input stream i2 contains the input left after the entire
operation. There are two output transformations. i1 is the output transformation
effected by the first monad m, and i2 is the transformation effected by the second
monad k a. The transformation of the entire monad is obtained by composing these
two output transformations: ol.o02.

9.6.2 The I/O monad transformer

We will now specify an I/O monad transformer. First, we define the following type
constructor, and an associated function.

data I0T m a
unIOM (IOM x)

IOM (String -> m (a,String,String->String))
x

The following two instance declarations assert that I0T is a monad transformer.

instance Monad m => Monad (IOT m) where
unit x = IOM (\i -> unit (x,i,\o—>0))
m ‘bind‘ k = IOM (\i0 -> (unIOM m) iO ‘bind¢ \(a,il,ol1) —>
unIOM (k a) i1 ‘bind‘ \(b,i2,02) —>
unit (b,i2,01.02))

instance (Monad m, Monad (IOT m)) => MonadT IOT m where
lift m = IOM (\i -> m ‘bind‘ \x —-> unit (x,i,\o->0))
unlift tm (unIOM tm) undefined ‘bind‘ \(a,i,o) -> unit a

140

Chapter 9. Programming with monads

9.6.3 The I/0O extension

We define an I/O extension by the following type class:

class (Monad m) => IOMonad m where

output
input
write
read
eof :
newline ::
readline
readword

m ()

:: m Bool

: m String

:: m String

:: String > m ()
:: m String
:: Char > m ()
:: m Char

We will briefly discuss the intended meanings of the member functions.

e output Puts a string on the output stream.

input Returns the input string in its entirity.

write Puts a single charachter on the output string.

read Returns the first charachter of the input string.

eof Tests whether the end of the input stream has been reached.

newline Puts a cariage return on the input string

readline Returns the first complete line from the input string.

e readword Returns the first complete word from the input string.

Several of these functions could be defined in terms of one of the others.
The monad I0 can be extended to an 1/O monad as follows:

instance IOMonad IO where

output s =
input =
write c =
read

eof =
newline

readline

readword

I0
I0
I0
I0
I0
I0
I0

I0

(\1i
(\1i
(\1i
(\1i
(\i
(\i
(\i

(\i

>

(0),i, \o —> s++0))

(i,"",\o—>0))

(0,1, \o -> c:0))

(head i,tail i,\o—>0))

(null i, i,\o—>0))

(O),i, \o => "\n’:0))

let (line,rest) = span (\c-> ¢/=’\n’) i
in (line,tail rest,\o->0))

let (line,rest) = span (\c-> c¢/=’ ’) i
in (line,tail rest,\o->0))

The function span takes a predicate p and a list 1, and returns a pair of the longest
initial segment of 1 in which the elements satisfy the predicate p, and the remainder of
1. We will explain shortly how these functions can be linked up with the I/O system
of Gofer.

The extension of the I/O monad transformer I0T is very similar to the extension

of the T/O base monad:

9.6. Monadic I/O 141

instance Monad m => IOMonad (IOT m) where

output s = IOM (\i -> unit ((),i, \o -> s++0))
input = IOM (\i -> unit (i,"",\o—>0))

write ¢ = IOM (\i -> unit ((),i, \o -> c:0))
read = IOM (\i -> unit (head i,tail i,\o->0))
eof = IOM (\i -> unit (null i, i,\o->0))
newline = IOM (\i —> unit ((),i, \o -> ’\n’:0))

readline = IOM (\i -> unit (let (line,rest) = span (\¢c-> c/=’\n’) i
in (line,tail rest,\o->0)))
readword = IOM (\i -> unit (let (line,rest) = span (\¢—> c/=’ ’) i

in (line,tail rest,\o->0)))

To obtain this extension from the previous one, all member functions have been made
monadic by inserting unit functions, and tags.
The I/0 extension is generically lifted through monad transformers as follows:

instance (IOMonad m, MonadT t m) => IOMonad (t m) where

output = 1lift . output
input = 1lift input
write = lift . write
read = 1lift read

eof = 1lift eof
newline = 1lift newline
readline = 1lift readline
readword = 1lift readword

Hence, when an I/O monad is transformed, the resulting monad will be an I/O monad
as well.

In the next subsection, we will explain in detail how I/O monads can be linked up
with Gofer’s T/O system. We will focus in particular on interactive 1/0.

9.6.4 Interactive I/O

When performing interactive I/O it is essential that output can be produced before all
input has been received. This allows the user to interact, i.e. it allows him to provide
the system with input depending on the output already given.

As it turns out, monads created with the /O monad transformer will not in general
yield programs that can produce I/O before they terminate. The reasons for this will
become clear when we investigate an example.

Suppose we create a monad by transforming the Maybe monad with the I/O monad
transformer:

type M = TIOT Maybe

This would allow us to write a program such as the following;:

program 1t MO
program = output "Password ? " >>
readline >>= \pswd ->

if correct pswd
then output "Welcome"
else zero

142 Chapter 9. Programming with monads

We would like this program to prompt the user with the string Password ? before it
tries to read from the input stream. Unfortunately, our program could never operate
in this sequence. To understand why this is so, expand the type synonym M:

M

I0OT Maybe
IOM (String -> Maybe (a,String,String->String))

Since program is of type M (), it can have one of two forms:

IOM (i -> Just ((),i’,0->0’))
I0OM (i -> Nothing)

The second of these forms is a (lifted) zero. If our program has the first form, it
will produce output. If it has the second form, it will not produce any output. So,
to determine whether out program produces output, we need to determine whether
it has zero-form or not. Looking at the definition of our program, we can see that it
depends on the input into the program whether it takes zero-from or not. Hence, it
depends on the input of the program whether the program produces output. So, no
output can be generated until the input is read. Hence, the prompt Password ? will
not appear before the password has been typed in by the user. This is obviously not
the desired behaviour.
Consider the following alternative definition of M:

type M = MaybeT IO
Expanding this definition:

M = MaybeT I0
MaybeM (IOM (String -> (Maybe a,String,String->String)))

So, now our program can take one of the following two forms:

MaybeM (IOM (\i -> (Just (), i’, o0->07)))
MaybeM (IOM (\i -> (Nothing, i’, o0->0’)))

The second of these forms is the zero-form. Hence, our program will produce output,
whether our program takes zero-from or not. Hence, the prompt Password ? can
appear before the user types his password. This is the behaviour we desired our
program to display.

We will now define a class InteractiveI0. With this class we will provide those
monads that are suitable for interactive I/O, with the appropriate functions to actually
perform input and output through the Gofer type Dialogue. The member function
interactive takes as argument a monad and returns a function which maps an input
string to an output string. The member function dialogue is defined in terms of
interactive. It takes a monad as argument, and returns a dialogue.

class InteractivelIO m where

interactive :: m () -> (String -> String)
dialogue ::m () -> Dialogue
dialogue m = readChan stdin exit (\i ->

appendChan stdout (interactive m i) exit domne)

The monad I0 is suitable for interactive 10. Therefore, we declare the following in-
stance:

9.6. Monadic I/O 143

instance InteractivelO I0 where
interactive m i = 1let (_,_,ot) = unI0Om i
in ot "nn

Note that the use of don’t-cares in the local binding is essential. If we write variables
for these, the Gofer interpreter will try to evaluate the encapsulated value and the
input stream in order to match these variables before it evaluates ot "". As a result,
no output will be displayed until all input has been received.

Since monads created with the monad transformer IOT are not in general suit-
able for interactive I/O, we will not declare an instance of InteractiveIO for these
monads.

Interactivity is lifted through monad transformers by the following declaration:

instance (MonadT t m, InteractiveIO m) => InteractiveIO (t m) where
interactive tm i = interactive (unlift tm) i

Thus, monads created by transforming a monad suited for interactive I/O are them-
selves suited for interactive I/O as well. The function interactive for the transformed
monad is defined in terms of the function interactive of the underlying monad, and
in terms of the function unlift.

We can now return to our password program. If we define the monad M as MaybeT
I0, then we can run this little program as follows:

? dialogue program

Password ? TheCorrectPassword
Welcome

(155 reductions, 415 cells)

? dialogue program

Password ? AnIncorrectPassword
Tried to unlift Nothing

(108 reductions, 334 cells)

In both cases, the password prompt is displayed before the password is typed in by the
user. In the first case, the user provides the correct password, the welcome message
is displayed, and the program terminates normally. In the second case, the user
provides an incorrect password. The welcome message is not displayed. Instead, the
program terminates abnormally and an error message Tried to unlift Nothing is
generated. This error is due to the unlifting of the zero-monad of type MaybeT IO by
interactive.

In this chapter, a comprehensive treatment has been given of the monadic program-
ming method. In the next chapter, this method will play an essential role in the
implementation of EVADE.

Chapter 10

EVADE: monadic
implementation in Gofer

10.1

10.2

10.3

10.4

10.5

10.6

10.7

Decomposition of EVADE
10.1.1 Top level structure
10.1.2 Decomposition of the preprocessor
10.1.3 Decomposition of the compiler
10.1.4 Decomposition of the run analyzer
10.1.5 Deeper levels of subcomponents
The monads for the various components
The exception mechanism of EVADE
Implementation of the low level components
10.4.1 Parser oL
10.4.2 Generator Lo
10.4.3 Evaluator oo
10.4.4 Executor
10.4.5 Random number generator
10.4.6 History manager
Implementation of the intermediate level components
10.5.1 Engine Lo
10.5.2 Random descender L.
10.5.3 Interactive explorer
Implementation of the top level components
10.6.1 Preprocessor e
10.6.2 Compiler
10.6.3 Run analyzer,
Extendability of EVADE

144

10.1. Decomposition of EVADE 145

parser

preprocessor

*.gea *.gs

generator

(compiler) (run analyzer)

USER

Fig. 10.1: EvADE Fig. 10.2: Preprocessor

*.gea

In chapter 6, the evolving algebra tool EVADE was described from the point of view of
a user. In this chapter, the implementation of EvADE will be discussed. EVADE is im-
plemented in the functional language Gofer, and makes ample use of the monadic pro-
gramming method explained in the previous chapter. Section 10.1 gives an overview of
EVADE’s internal structure, by decomposing it into components and subcomponents.
Section 10.2 introduces the various monads that are used in the implementation of
EVADE. In section 10.3 the exception mechanism of the program is explained. The
implementation of the low level components of EvADE is discussed in section 10.4.
The intermediate level components and top level components are discussed in section-
s 10.5 and 10.6. Finally, section 10.7 evaluates the implementation of EvADE, and
anticipates further development of the tool.

10.1 Decomposition of EVADE

In this section, we will give an overview of the structure of EvADE. First, we will
consider the top-level structure in subsection 10.1.1. At this level, three components
can be discerned: the preprocessor, the compiler and the run analyzer. In subsections
10.1.2 through 10.1.4 these three components will be further decomposed into sub-
components. In subsection 10.1.5 the decomposition will be carried further still, to
culminate in the isolation of six basic building blocks of EVADE.

146 Chapter 10. EvADE: monadic implementation in Gofer

*.gea *.gs *.gea *.gs
engine engine
transi- transi-
tion tree tion tree
(random descender) (interactive explorer)
USER
Fig. 10.3: Compiler Fig. 10.4: Run analyzer

10.1.1 Top level structure

In chapter 6, the relationship between the three top level components of EvADE and
the files used by these components was explained. We will briefly recapitulate this
explanation. The accompanying illustration is shown again in figure 10.1.

Evolving algebra specifications are assumed to be stored in files with extension ea.
EVADE’s first component, the preprocessor, converts an evolving algebra specification
to an intermediary representation which it stores in a file with extension gea. The
other two components of EVADE, the run analyzer and the compiler, take the inter-
mediary representation produced by the preprocessor as input. The static functions
and sets used by evolving algebra specifications are defined in Gofer script files with
extension gs. The compiler and the run analyzer take these files as input as well.

We will in turn decompose the preprocessor, the compiler and the run analyzer
into subcomponents.

10.1.2 Decomposition of the preprocessor

The task of the preprocessor is to convert an evolving algebra specification to an
intermediary representation, which can be read by the compiler and the run analyzer.
The preprocessor performs his task in two steps. In the first step, the evolving algebra
specification is parsed, resulting in a parse tree. In the second step, the parse tree is
stored in a file, together with some additional information extracted from the parse
tree. Thus, the preprocessor has two subcomponents: a parser and a generator. The
relationships between these subcomponents, the internal parse tree and the files used
by the preprocessor is depicted in figure 10.2.

10.1. Decomposition of EVADE 147

(analyzer) (compiler)

(explorer) (engine) (descender)

N2
(generator) (parser) (history) @Valuator) (executor) (randomizer)

Figure 10.5: Complete decomposition of EVADE

10.1.3 Decomposition of the compiler

The task of EVADE’s second component, the compiler, is to descend in a non-determinate
way the transition tree induced by an evolving algebra, until a final state is encoun-
tered, and to evaluate the return expression of the evolving algebra in that final state.
This task of the compiler can be split into two subtasks. The first subtask is to gen-
erate the transition tree induced by an evolving algebra. The subcomponent which
performs this task is called the engine. Since the transition tree of an evolving algebra
can be of infinite size, the engine must lazily generate this tree.

The second subtask of the compiler consists in following a path through the tran-
sition tree until a final state is reached, and evaluating the return expression of the
evolving algebra in this state. At each fork along the path, a non-determinate choice
must be made among the possible transitions. The resulting path is a non-determinate
run of the evolving algebra. The subcomponent that performs this subtask is called
the random descender. The relationships between the subcomponents of the compiler,
the transition tree and the input files are shown in figure 10.3

10.1.4 Decomposition of the run analyzer

The task of the run analyzer is to enable the user to interactively explore the transition
tree induced by an evolving algebra. This task is distributed over two subcomponents.
The first of these is the engine which is also present in the compiler. It lazily generates
the transition tree induced by an evolving algebra. The second component is called an
interactive explorer. It takes commands and other input from the user, and responds
by moving through the transition tree and displaying information. Figure 10.4 graphi-
cally presents the relationships between these subcomponents, the transition tree, the
input files, and the user.

10.1.5 Deeper levels of subcomponents

From the decompositions given in the previous subsections, one can glean that the
three components of EVADE are decomposable into five distinct subcomponents: a
parser, a generator, an engine, a random descender, and an interactive explorer. The
last three of these subcomponents can be decomposed even further.

148 Chapter 10. EvADE: monadic implementation in Gofer

Engine The engine has two subordinates: an evaluator and an executor. The ex-
ecutor fires transition rules at evolving algebra states, and delegates the evaluation of
conditions and terms to the evaluator.

Descender The random descender invokes two helpers: a random number generator
and the same evaluator as was used by the engine. In this case the evaluator is used
to evaluate the return expression of an evolving algebra.

Explorer The interactive explorer invokes four subordinates. It uses the parser,
which it shares with the preprocessor, to parse user input into shell commands and
evolving algebra expressions. Like the engine, 1t delegates the evaluation of expressions
to the evaluator. It shares the random number generator with the descender. Finally,
it uses a history manager to archive and recall previous states.

The complete decomposition of EVADE is depicted in figure 10.5. The lowest level
of decomposition contains six ultimate subcomponents: the parser, the generator,
the evaluator, the executor, the random number generator and the history manager.
Hence, these six subcomponents are the basic building blocks from which EvADE is
built.

In the upcoming sections we will discuss EVADE’s components of different levels in
turn, starting at the lowest level. But first, we need to make some remarks about the
use of monads in the implementation of EVADE, and about its exception mechanism.

10.2 The monads for the various components

In the implementation of EVADE, a total of four distinct monads are used. These
monads are built from various base monads and monad transformers introduced in
the previous chapter. FEach of these monads is named after a component that is
implemented by it.

The parser monad

The parser is used in EVADE in three places. In the preprocessor, the parser 1s used
to parse evolving algebra specifications. In the run analyzer the parser is used in one
place to parse user input to commands, and in another place to parse user input to
expressions. In all these places we will use the same parser monad PM:

type PM = ParserT List

Thus, parsers of the type PM a are list based parsers, without any additional monadic
features.

The engine monad

The engine evaluates terms and conditions and performs updates. During these oper-
ations, exceptions may be raised. To make this possible, the engine monad EM is an
exception monad. It is defined as follows:

type EM = Expt EvadeException

The exception type for this monad, called EvadeException, will be defined and ex-
plained in section 10.3.

10.2. The monads for the various components 149

The descender monad

The random descender needs to perform monadic random number generation. In
order to make this possible, the descender monad DM is a state monad specialized in
random number generation.

type DM = State RandomInt

The state type, called RandomInt represents the seed of the monadic random number
generator. The random number generator is explained in section 10.4.5

The explorer monad

The monad of the interactive explorer is called XM. The explorer must be able to
perform history management, generate random numbers, raise and handle exceptions,
and perform interactive 1/0O. To accommodate these features, the explorer monad
must be at once a state monad for history management, a monad for random number
generation, an exception monad, and an 1/O monad. It is defined as follows:

type XM v = StateT (Stack (Run v)) (
StateT RandomInt (
ExptT EvadeException
10))

This explorer monad is parameterized with respect to a type variable v. This type
variable represents the supertype of values of an evolving algebra. We will explain
this supertype in section 10.4.3. The base monad of the explorer monad is the 1/0O
monad I0. This monad is first transformed by the exception monad transformer. The
resulting monad is transformed by the state monad transformer for random number
generation. Finally, the state monad transformer is applied to add a stack of runs as
a state to the monad. This stack constitutes the history of the run analyzer session.
In section 10.6.3, we will explain why the items on this stack are of type Run v.

When two components with different monads cooperate, it is necessary to change
from the monad of the one to the monad of the other. In the course of the upcoming
sections, we will present a number of functions with which these monad-switches can
be accomplished in a very elegant manner.

In principle, 1t is possible to combine all monadic features used by the components
of EVADE into a single monad. Each component can than use this monad, even though
they do not use all features present in it. The motivation for distributing the monad
features over specialized monads is efficiency.

Each monad transformer adds an encapsulation to a monad. As the number of
transformers increases, both the encapsulated value and the added monad feature
become enveloped inside more layers. The later a monad transformer is added, the
deeper its corresponding feature will be encapsulated. To access these values and
monad features, layers need to be stripped away and re-installed constantly. As a
consequence, the evaluation of the monadic program that uses the monad becomes
more laborious, and slower.

The most labor intensive subtasks of EVvADE are performed by the parser and the
engine. To guarantee a good response time of the entire program, especially these
components need to run efficiently. However, the monad features used by these com-
ponents — monadic parsing and exception handling — can impossibly be made outer

150 Chapter 10. EvADE: monadic implementation in Gofer

layers of a monad in which all necessary monad features are combined. Remember
that the I/O monad transformer IOT is not suited for interactive I/O (see section
9.6). Hence, we need to use I0 as the base monad of our all-encompassing monad. As
a consequence, the outer layer of this monad will necessarily be provided by the I0
monad, and the monadic parser and the exceptions will be encapsulated within it. So,
since the parser and the engine do not perform I/O, their operation will be hindered
constantly by a layer of which they make no use. Needless to say, this situation should
be avoided.

The system of four distinct monads in the implementation of EVADE has been
designed to avoid unnecessary layers hampering the parser and the engine. The parser
monad and the engine monad do not contain any features not used by the parser and
the engine, respectively. Only after each of these monads has completed its task, are
other monad features added with 1ift and insert. Also, the parser feature, which is
of no use to the other components is discarded with an unlift when parsing is done.
The various 1lift, unlift and insert invocations are grouped inside the monad
switching functions that will be presented in the course of the upcoming sections.

10.3 The exception mechanism of EVADE

EVADE is equipped with an extensive exception mechanism. The following exceptions
are currently supported:

e Parse exception. Is raised when parsing fails.

e Get, put, and remove exceptions. The first is raised when attempts are made to
get the value of a non-existing identifier from a state. The second is raised when
an attempt is made to update a non-existing identifier. The last is raised when
an attempt is made to remove a name from a state with empty vocabulary.

e Type Exception. Is raised when a type mismatch occurs.

e History exception. Is raised when an attempt is made to recall elements from
an empty history stack.

These various exceptions are represented by the following datatype:

data EvadeException = GetExp Name | PutExp Name | RemoveExp
| TypeExp | HistoryExp | ParseExp

The first two exceptions, the get exception and the put exception, have as argument
the evolving algebra names whose non-existence caused the exception. To raise these
exceptions, we will use the following functions:

e getExpt name
e putExpt name
e removeExpt

e typeExpt

e historyExpt

e parseExpt

10.4. Implementation of the low level components 151

How these exception raising functions are defined will be explained in the course of
the following sections. To handle these exceptions, two different exception handling
functions are available. The first of these handles an exception by producing a run-
time error. It is defined as follows:

errorHandler e
= (case e of

GetExp n -> error ("Get exception. Unknown name: " ++ n)
PutExp n -> error ("Put exception. Unknown name: " ++ n)
RemoveExp —> error "Remove exception"

TypeExp -> error "Type exception"

HistoryExp -> error "History exception"
ParseExp -> error "Parse exception')

The second exception handler is similar to the first, but returns an output monad in
stead of producing a run-time error. It is defined as follows:

outputHandler :: (IOMonad m) => EvadeException -> m ()
outputHandler e

= output "\BEL" >> -- beep
(case e of

GetExp n -> output ("Get exception. Unknown name: " ++ n)
PutExp n -> output ("Put exception. Unknown name: " ++ n)
RemoveExp —> output '"Remove exception"
TypeExp -> output "Type exception"
HistoryExp -> output "I can not go back any further"
ParseExp -> output "Parse exception')

We will use these different handlers for different situations. In programs that perform
I/0O, the second handler can be used. Each time an exception occurs, a message
will be displayed, and the program will continue operating. In programs that do
not perform I/0, i.e. programs that produce values of types other than Dialogue,
the second exception handler can not be used. In these programs we will use the first
handler, which produces a run-time error in case of exceptions. In particular, the error
exception handler will be used for the compiler, while the output exception handler
will be used by the run analyzer.

10.4 Implementation of the low level components

In section 10.1.5 six basic building blocks of EVADE were isolated: the parser, the
generator, the evaluator, the executor, the random number generator, and the history
manager. We will discuss each of these subcomponents in turn.

10.4.1 Parser

The parser of EVADE is constructed with the monadic parsing library explained in
section 9.5. The same method is applied as in the example given there. We start
from a BNF syntax description of evolving algebra specifications to define the type of
a parse tree. Then, we define a parser for each datatype used. We use the operator
[| |= to remove left-recursiveness.

152 Chapter 10. EvADE: monadic implementation in Gofer

A complete BNF syntax description of evolving algebra specifications can be found
in appendix B. We will not discuss this BNF in full detail. We will focus on the lines
of the BNF which define evolving algebra specifications and terms, respectively:

specification — MODULE name parameterlist signature
start program stop returnexpr

term — name [(term (, term)*)] | (term) | - term |
number | term termoperator term

These syntax descriptions give rise to the following datatypes:

data EASpec = EASpec Name Parameters Signature
StartClause ProgramClause
StopClause ReturnClause

ST Name [Term] |

UCT UnOp Term |

BCT Term BinOp Term |

Num Number

data Term

Together with the datatypes corresponding to the remaining lines of the syntax de-
scription, these datatypes define the type of parse trees of evolving algebras.

For each datatype constitutive of the parse tree type, a parser needs to be defined.
To be able to overload the name parser for each of these parsers, we introduce the
following class of parsers:

class ParserClass a where
parser :: PM a

The member function parser of this class yields a parse tree encapsulated by the
parser monad as its value. By declaring an instance of this class for each datatype
constitutive of the parse tree, a parser is defined for each line in the BNF.

A parser for a complete evolving algebra specification is defined by declaring an
instance of ParserClass for the datatype EAspec:

instance ParserClass EASpec where
parser = spkey "MODULE" >>

Sp parser >>= \modulename ->
Sp parser >>= \parameters ->
Sp parser >>= \returnexp ->
Sp parser >>= \signature ->
Sp parser >>= \start ->

Sp parser >>= \program ->

Sp parser >>= \stop —>

return (EASpec modulename parameters signature
start program stop returnexp)

This definition corresponds directly to the first line of the syntax description of e-
volving algebra specifications. It operates by applying the parsers for the clauses of
an evolving algebra specification in sequence. Each of these parsers is invoked by an
instantation of the overloaded function parser.

A parser for evolving algebra terms is defined by declaring an instance of ParserClass
for the datatype Term:

10.4. Implementation of the low level components 153

instance ParserClass Term where

parser = ((sp parser >>= \name ->

optional (parenthesized (interleaved
(sp parser) (sptok ","))) >>= \terms ->

return (ST name (maybe2list terms)))
11
(parenthesized (sp parser))
[
(sptok "-" >>
Sp parser >>= \term ->
return (UCT Neg term))
[
(number >>= \n ->
return (Num n)))

[11=\p —>

(spp >>= \terml ->
Sp parser >>= \op ->

Sp parser >>= \term2 ->

return (BCT terml op term2))

N

a

maybe2list Nothing
maybe2list (Just a)

This parser corresponds directly to the syntax description of terms. It is also very
similar to the parser for expressions explaned in section 9.5. For each of the alternatives
in the syntax description a sub-parser is defined. These sub-parsers are combined with
the monadic plus operator | | |. To avoid non-termination due to left-recursiveness, the
last sub-parser is combined with the others with the operator | | | =, which is explained
in section 9.5 as well.

In this fashion, a parser can be defined for each line in the syntax description of
evolving algebra specifications. Together, these parsers form the parser-component of
EVADE.

10.4.2 Generator
The task of the generator is to create a Gofer representation of the evolving algebra,
on the basis of the parse tree supplied by the parser. Such a Gofer representation has
four parts:

e The declaration of the supertype of values.

e The type declaration of the evolving algebra.

e The definition of the evolving algebra.

e The definition of the compiled evolving algebra.

We will discuss these four parts in turn, and explain how they are created by the
generator.

154 Chapter 10. EvADE: monadic implementation in Gofer

Declaration of value supertype

Each name in an evolving algebra takes on values of a particular sort. These sorts
are bound to Gofer types by the signature. In order to give a type declaration and
a definition of the evolving algebra, these several value types must be united in one
supertype. As will be explained in section 10.4.3, such a supertype can be represented
in Gofer by a type of the following form:

ORA(RB(ORC .. () ..))

where A, B and C are the value types to be united.

The generator deduces which value types occur in an evolving algebra from its
signature, and creates the supertype of values which unites them. This supertype is
stored in the Gofer representation of the evolving algebra under the name Typename,
where name is the name of the evolving algebra.

Type declaration of the evolving algebra

Apart from the supertype of values, two elements are needed to declare the type of
an evolving algebra: the types of its arguments, and the type of its return value. The
generator deduces the type of the arguments by looking up in the signature to which
Gofer type each argument sort occuring in the parameter list is bound. The result
type is deduced by looking up to which Gofer type the result sort is bound.

Suppose the generator deduces that the argument and result type of an evolving
algebra are A1, A2 and R. Then, the following type declaration of the evolving algebra
is produced:

nameEA :: A1 -> A2 -> EA Typename R

where name is the name of the evolving algebra. The type constructor EA is explained
in the following subsection.

Definition of the evolving algebra

The type declaration of an evolving algebra involves the type constructor EA, which
is defined as follows:

data EA v r = EA Name (EAstate v) Updates Program Formula Term

The type variables v and r represent the value supertype and the result type of the
evolving algebra, respectively. The arguments of the constructor function EA on the
right hand side, correspond to the constituent parts of an evolving algebra definition.
We will briefly explain them in turn:

e Name The name of the evolving algebra.

e (EAstate v) The null-state of the evolving algebra. The type constructor
EAstate will be explained in section 10.4.3. The notion of a null-state will
be explained below.

e Updates The parsed start update set of the evolving algebra.
e Program The parsed program of the evolving algebra.

e Formula The parsed stop condition of the evolving algebra.

10.4. Implementation of the low level components 155

e Term The parsed return expression of the evolving algebra.

The name of the evolving algebra, its start update set, program, stop condition and
return expression need no clarification. These elements are all explicitly present in
the evolving algebra specification. Their parsed versions are subtrees of the parse tree
produced by the parser. The null-state, however, needs explanation.

The initial state description of an evolving algebra in EvADE has two parts. In
the signature, a mapping is given from static sort names and static function names to
Gofer types and Gofer functions. This mapping is supplemented by the start update
set, which assigns values to dynamic names. The mapping given in the signature
defines a so-called null-state, in which all static names have an interpretation, and
all dynamic names are undefined. The start update set is fired at this null-state to
produce the initial state. The generator constructs the null-state on the basis of the
signature.

To construct a definition of an evolving algebra, the generator combines the null-
state with the name, start update set, program, stop condition and return expression,
which it takes directly from the parse tree.

Definition of the compiled evolving algebra

The last part of the Gofer representation of an evolving algebra is the definition of the
compiled evolving algebra. For an evolving algebra with parameters al and a2, this
definition takes the following form:

name al a2 = compile (nameEA al a2)

where name is the name of the evolving algebra.

10.4.3 Evaluator

Since the evaluator is part of the engine, it uses the engine monad EM. The task of the
evaluator is to determine the value of a term or a condition in a given state. Terms
and conditions are represented by the types Term and Formula. In the following sub-
sections, we will explain how values and states are represented, and how the evaluator
operates.

Representing values

Each name in an evolving algebra takes on values of a particular sort. These sorts are
bound to Gofer types by the signature. Thus, a number of value types is associated
to each evolving algebra. These individual value types can be united into a single
type, which we will call the value supertype of the evolving algebra. This supertype
is needed as the result type of the evaluator and as the type of values to which names
are interpreted in an evolving algebra state.

Representing union types
To model union types in Gofer we use the following data constructor:

data ORab = LalR6D

Using this data constructor, we can define a subtype-supertype relation by the follow-
ing class and its instances:

156 Chapter 10. EvADE: monadic implementation in Gofer

class SubT sub sup where
inject :: sub -> sup
project 11 sup -> sub

instance SubT a (OR a b) where

inject = L
project (L x) = x
project _ = error "Subtype error"

instance (SubT a b) => SubT a (OR ¢ b) where

inject sub = R (inject sub)
project (R a) = project a
project _ = error "Subtype error"

The class has member function inject and project. The function inject injects a
subtype into a supertype. The function project projects a supertype to a subtype.
The instance declarations together assert that union types are supertypes of the types
by which they are formed.

For instance, we can model the union type of integers and booleans as follows:

type IntBool = OR Int (OR Bool ())
To obtain supertype values from subtype values, we use the injection function:

inj 1 ==> L1
inj True ==> R (L True)

To obtain subtype values from supertype values, we use projection:

prj (L 1) ==> 1
prj (R (L True)) ==> True

The member functions of the class SubT produce run-time errors when type mis-
matches occur. A monadic counterpart of this class can be defined whose member
functions do not produce run-time errors, but raise exceptions. We will call this class
SubType. The declarations of the class as well as its instances, and an auxilliary class
are as follows:

class (SubTypeExpt m) => SubType m sub sup where
inj :: sub -> m sup
prj :: sup —> m sub

instance (SubTypeExpt m) => SubType m a (OR a b) where

inj = unit . L
prj (L x) = wunit x
prj _ = subTypeExpt

instance (SubTypeExpt m, SubType m a b) => SubType m a (OR ¢ b) where

inj sub = inj sub >>= \x ->
unit (R x)
prj (R a) = prj a

prj _ subTypeExpt

10.4. Implementation of the low level components 157

class (Monad m) => SubTypeExpt m where
subTypeExpt :: m a

The auxilliary class SubTypeExpt has as member function the exception raising func-
tion subTypeExpt, which was already mentioned in section 10.3. This function is used
by the injection and projection functions inj and prj when a type mismatch occurs.

Representing the value supertype

To model the type of all possible values of an evolving algebra, we start by gathering
the non-predefined static sorts of the evolving algebra in a supertype. Assume these
sorts to be S1 and S2:

type V = OR S1 (OR S2 ())

Then, we add the predefined types integer and boolean, as well as the type of dynamic
sorts and the type of dynamic sort elements:

type Value v = OR DS (OR [DS] (OR Bool (OR Int v)))

Next, we add the type of functions from values to values.

type Fun v = [v]l] -> 0Opt v
type FunOrVal v = OR (Fun v) v
type FunValue v = FunOrVal (Value v)

We will also use the following abbreviations:

type OptValue v Opt (Value v)
type OptFunValue v. = Opt (FunOrVal (Value v))

When v is the union of the sorts bound to non-predefined sort names, then OptValue
v represents the uniontype of values of ground terms, and OptFunValue represents the
uniontype of values of ground and non-ground terms.

Representing states

Using the type constructor OptFunValue, we can define the type of evolving algebra
states as follows:

type EAstate v = [(Name, OptFunValue v)]

Again, the type variable v represents the union of all non-predefined static sorts of
the evolving algebra concerned.

Several operations are needed to inspect and manipulate states. These operations
will be given by member functions of a class StateClass. The declarations of this
class and two auxilliary classes are as follows:

class (PreStateClass m s) => StateClass m s v where

get :: String -> s —>mv
put :: String > v -> s -> m s
extend :: String -> v -> s ->m s

class PreStateClass m s where
remove 118 > m s

158 Chapter 10. EvADE: monadic implementation in Gofer

class StateExpt m where

removeExpt :: m a
getExpt :: Name ->m a
putExpt :: Name > m a

Like the class SubType, the class StateClass contains monadic member functions,
which raise expressions when anomalies occur, in stead of producing run-time errors.
The relevant exception raising functions are defined in the auxiliary class StateExpt.
These functions were mentioned earlier in section 10.3. The member function get is
used to obtain the interpretation of a given name in a state. The member function
put is used change the interpretation of a given name in a state to a new value.
The member function extend adds a new name to a state, and provides it with an
initial interpretation. The member function remove undoes the effect of the previous
invocation of extend. This last member function can not be defined as a member
function of StateClass itself, because Gofer requires the types of member functions
to contain all type parameters of the class to which it belongs. Since the type of
remove does not involve the type variable v, it does not meet this requirement. For
this reason, a superclass PreStateClass which has one type parameter fewer 1s created
to contain remove.

To make the state operations defined in StateClass and PreStateClass available
on evolving algebra states, we need to define instances for EAstate of these classes
and the auxilliary class StateExpt.

instance (Monad m, StateExpt m) => PreStateClass m (EAstate v) where
remove [] = removeExpt
remove (x:xs) = unit xs

instance (StateExpt m) => StateClass m (EAstate v) (OptFunValue v) where
get n [] = getExpt n
get n ((m,w):s) if n==m

then unit w
else get n s

put n v [] = putExpt n
put n v ((m,w):s) = if n==m
then unit ((m,v):s)
else put n v s >>= \s’ ->
unit ((m,w):s’)
extend n v s = unit ((n,v):s)

instance (ExptMonad EvadeException m) => StateExpt m where

removeExpt = raise RemoveExp
getExpt n = raise (GetExp n)
putExpt n = raise (PutExp n)

The get and put operations recursively search a state until the given name is found.
If the name is not found, an exception is raised.
Evaluation

The task of the evaluator is to determine the values of a term or a condition 1n a state.
This task is performed by two functions of the following type:

10.4. Implementation of the low level components 159

evaluateForm :: (EvaluationContext m v)
=> Formula -> EAstate v -> m (OptValue v)
evaluateTerm :: (EvaluationContext m v)

=> Term -> EAstate v -> m (OptValue v)

These functions are fairly straightforward translations of the evaluation guidelines for
terms and conditions given in section EvalGuidelines. Take for example the guideline
for evaluating a term consisting of a 0-ary function name:

e The value of a term f in state S is the interpretation of the 0-ary function
identifier f in S. If the interpretation of the function identifier is st Undef, so is
the value of the term.

Hence, to determine the value of the 0-ary function name f in .S, we must first get the
interpretation of f from S. Next, we must test whether the interpretation is sf Undef
or not. If 1t 1s, the value to be returned is st Undef as well. If it is not, the value
to be returned is the interpretation of f itself. Hence, the function evaluateTerm is
defined for 0-ary function names as follows:

evaluateTerm (ST n [1) s
= getns >= \ofv —>
case ofv of
Undef => unit Undef
Def fv -> prjVal fv >>= \v ->
unit (Def v)

The variables ofv, fv and v are acronyms of their types: OptFunValue v, FunValue
v, and Value v. The function prjVal projects a value of type FunValue v to a value
of type Value v, which represents the type of ground terms.

The other guidelines for term evaluation are translated in a similar manner to
function bindings of evaluateTerm. These function bindings have been supplemented
with definitions for evaluation of the predefined arithmetic functions.

10.4.4 Executor

Like the evaluator, the executor is part of the engine and consequently uses the engine
monad EM. The task of the executor is to perform updates upon a state. In section
2.6 the effect of firing a set of updates in parallel at a state S was defined as the
accumulation of the effects of the individual updates. The accumulation of these
individual effects proceeds by firing the updates sequentially. Each update is fired at
the state produced by its predecessor, but all updates are evaluated in S.

The function executeU s s0 evaluates an update in state s0, and fires 1t at state
s. It is defined as follows:

executel :: (EvaluationContext m v)

=> Update —> EAstate v -> EAstate v -> m (EAstate v)
executeU (SU u) s sO = executeSU u s s0
executeU (NU u) s sO = executeNU u s s0O

The auxiliary function executeSU and executeNU are used to perform a local function
update and a new-update, respectively. These functions are defined in accordance with
the description of the effects of local function updates and new-updates in section 2.6.

160 Chapter 10. EvADE: monadic implementation in Gofer

They make use of the function evaluateTerm to determine the values of right hand
sides, and other terms.

Using the function executeU, the function executeUsSeq s sO can be defined.
This latter function fires an update set sequentially at the state s, while each update
is evaluated in s0. It is defined as follows:

executeUsSeq :: (EvaluationContext m v)

=> Updates -> EAstate v -> EAstate v -> m (EAstate v)
executeUsSeq [] s s0O = unit s
executeUsSeq (u:us) s sO = executeU u s s0 >>= \s’ ->

executeUsSeq us s’ sO
This function definition accords with the description of the accumulation of effects of

updates in a set.

10.4.5 Random number generator

The monadic random number generator is defined in terms of a state monad. The
state of this state monad represents the current seed of the generator. Its type is
RandomInt. Three operations are defined for the random number generator:

e reseed n: reseeds the generator with n.
e generate: generates a random number.
e random n: generates a random number between 0 and n-1.

These functions are defined in terms of the state monad function update, and the
function minimumStandardGenerator, which is the actual implementation of the ran-
dom number generator. Here we only list the type declarations of the monadic number
generator functions:

reseed :: (StateMonad RandomInt m) => Int -> m ()
generate :: (StateMonad RandomInt m) => m Int
random :: (StateMonad RandomInt m) => Int -> m Int

These functions can be used in any monad m that satisfies the type predicate StateMonad
RandomInt m.

10.4.6 History manager

The task of the history manager is to enable states of the run analyzer to be archived
and recalled. The history manager is based on a state monad and an exception monad.
Three functions are defined for history management.

e initarchive Initialize the archive.
e archive Archive an item.
e recall Recall the most recently archived item.

These functions, as well as an auxiliary class are defined as follows:

10.5. Implementation of the intermediate level components 161

initarchive :: (StateMonad (Stack a) m, HistException m)
=> m (Stack a)

initarchive = update (const (Stack []))

archive :: (StateMonad (Stack a) m, HistException m)
=>a->m ()

archive a = update (push a) >>

unit ()

recall :: (StateMonad (Stack a) m, HistException m)

=>m a

recall = update id >>= \stack ->
case poptop stack of
(stack’,Nothing) -> historyExpt
(stack’,Just x) -> update (const stack’) >>
unit x

class HistException m where
historyExpt :: m a

The auxiliary class HistException harbors the exception raising function historyExpt.
This function is used by recall if no items are present in the archive. These three
functions for history management are defined in terms of the stack functions push and

poptop.

10.5 Implementation of the intermediate level com-
ponents

In the foregoing section, the six low level components of EVADE were discussed. We
turn now to the intermediate level components: the engine, the random descender,
and the interactive explorer.

10.5.1 Engine

The engine of EVADE generates the transition tree which is induced by an evolving
algebra. To represent transition trees, a type of general trees called GeneralTree is
used. On trees of this type, several functions are defined:

e root Returns the root node of a tree.
e branches Returns the list of branches of a tree.

e consTrees Constructs a tree from a root and a list of branches.

The transition tree of an evolving algebra, which can be viewed as a branching run,
can be represented as follows:

type Run v = GeneralTree (Name, EAstate v)

The nodes of these transition trees are pairs of transition rule names and evolving
algebra states. The transition rule name indicates which rule was fired to obtain the
state.

Using the type constructor Run, we can define the engine as follows:

162 Chapter 10. EvADE: monadic implementation in Gofer

engine :: (EvaluationContext m v)
=> EA v r -> EM (Run v)
engine ea
= 1let EA _ s startUs program _ = ea
in executeUsSeq startUs s s >>= \s0 ->
doProg program '"START" sO

Hence, the engine takes an evolving algebra and returns a run encapsulated in an
engine monad. The function executeUsSeq is used to fire the start update set at the
null-state of the evolving algebra, which results in the initial state s0. The auxiliary
function doProg generates the run induced by the evolving algebra, on the basis of its
program. This latter function is defined as follows:

doProg :: (EvaluationContext m v)
=> Program -> Name -> EAstate v -> EM (Run v)
doProg p n s0
= unit (map unEM

[evaluateForm g s0 >>= \ov —>
prj (unOpt ov) >>=\b —>
if not b

then unit NilTree
else executeUsSeq u s0 s0 >>= \s ->
doProg pns | (n,g,u) <-p 1) >>= \runs ->
unit (consTree (n,s0) runs)

Note that the bulk of this function definition is formed by a list comprehension. Inside
this list comprehension, three things are done for each rule in the program. First, the
guard g of the rule is evaluated in s0. Secondly, the resulting value ov is projected
to a boolean value b. Thirdly, if this boolean value is True, then the update set of
the rule u is fired at state s0, and the function doProg is invoked recursively with the
resulting state s. Thus, this list comprehension generates a list of transition subtrees
— one subtree for each applicable rule.

The subtrees in the list created by the list comprehension are all encapsulated by
engine monads. To free the subtrees from their encapsulation, the function unEM is
mapped over the list. This function is defined as follows:

unEM :: EM a -> a
unEM em
= case em of
Succ a -> a
Fail e -> errorHandler e

Exceptions are handled by this function by applying the error handler. If no exception
occured, the value a is returned unencapsulated.

In the last line of the function definition of doProg, the complete transition tree is
constructed with the state s0 as root, and the unencapsulated subtrees as branches.

10.5.2 Random descender

The task of the random descender is to descend the transition tree of an evolving
algebra along a random path until a final state is reached. In this final state, the
return expression of the evolving algebra must be evaluated. At each fork encountered

10.5. Implementation of the intermediate level components 163

in the transition tree, the random descender will use the monadic parser generator to
choose between the various branches.

The subcomponent of the descender, the engine, uses the engine monad EM. The
descender itself uses the descender monad DM, which is distinct from the engine monad.
Hence, to be able to use the engine, the descender needs a function for switching from
engine monads to descender monads. This function is called fromEMtoDM, and is
defined as follows:

fromEMtoDM :: EM a -> DM a
fromEMtoDM em
= case handle (errorHandler, em) of
Succ a -> unit a
Fail a -> error "Exception was raised, but not handled."

Recall the definitions of the engine monad and the descender monad:

type EM = Expt EvadeException
type DM = State RandomInt

The function fromEMtoDM applies the error handler to the engine monad. If any
exceptions slip through this handler, a run-time error is generated. Otherwise, the
value a encapsulated by the engine monad is inserted into the descender monad by
unit.

Using the function fromEMtoDM, the descender and an auxiliary function are defined
as follows:

descend :: (EvaluationContext EM t,
CompilerContext t,
SubType EM r (Value t))
=> Term -> Run t -> DM r
descend retexpr run
= reseed descenderSeed >>
descend’ run >>= \s’ ->
fromEMtoDM (
evaluateTerm retexpr s’ >>= \ov ->
case ov of
Def v -> prj v
Undef -> error "Return expression of evolving algebra is <undef>.")

descend’ :: (EvaluationContext EM t,
CompilerContext t)
=> Run t —-> DM (EAstate t)
descend’ run
= case (branches run) of
[-> unit (snd (root run))
[s] -> descend’ s
ss -> random (length ss) >>= \n ->
descend’ (ss!!n)

In the first line of the definition of the function descend, the random generator is
initialized with a seed. The auxiliary function descend’ recursively descends the
transition tree, and returns a final state. In this final state, the return expression of

164 Chapter 10. EvADE: monadic implementation in Gofer

the evolving algebra is evaluated by the evaluator. The function fromEMtoDM switches
from engine monad to descender monad. If the return value is undefined, a run-time
error is produced. Otherwise, the return value is projected from the value supertype
to the return type of the evolving algebra.

10.5.3 Interactive explorer

The general setup of the interactive explorer is as follows. The explorer iterates in a
loop of parsing a command and executing a command. If during the execution of a
command, an exception is raised, the output handler is applied and the loop is started
anew.

explore_loop :: (ExploreContext t)
=>Run t -> XM t ()
explore_loop r
= newline >>
prompt commandPrompt >>= \i —>
handle (exploreHandler r,
fromPMtoXM (goodparse i parser) >>= \c ->
execute ¢ r)

To switch from the parser monad PM to the explorer monad XM, the function fromPMtoXM
is used. This function is defined as follows:

fromPMtoXM :: PMa->XMt a
fromPMtoXM = fromEMtoXM.fromPMtoEM
fromEMtoXM :: EMa > XM t a
fromEMtoXM m = 1ift (1ift (insert m))

Thus, the function fromPmtoXM first applies the function fromPmtoEM to switch from
the parser monad to the engine monad. Then, the function fromEMtoXM is applied to
switch further to the explorer monad. This latter function is defined in terms of two
lifts, and one insertion. Recall the definitions of the engine monad and the explorer

monad:
type EM = Expt EvadeException
type XM t = StateT (Stack (Run t)) (

StateT RandomInt (
ExptT EvadeException
10))

The insert operation performed on the engine monad inserts the monad IO into the
exception monad, to produce an exception monad transformer. The two succesive lifts
turn the result into the explorer monad by adding two state monad tranformers.

The function execute executes a parsed command. Six distinct commands can
be distinguished: quit, refresh, eval, back, step, and until. The first three commands
serve to inspect the current evolving algebra state, and to exit the run analyzer. The
last three commands serve to navigate through the transition tree.

10.5. Implementation of the intermediate level components 165

Executution of the refresh command

When the the user issues the refresh command, the current evolving algebra state is
shown. The execution of the refresh command is defined as follows:

execute Refresh r
= showState (root r) >>
explore_loop r

After showing the current state, the explorer loop is continued.

Executution of the quit command

When the user issues the quit command, the interactive explorer is exit-ed. The
execution of the quit command is defined as follows:

execute Quit r
= nop

Thus, no action is undertaken, and the explorer loop is not continued.

Executution of the eval command

When the user issues the eval command, he is prompted to type an expression. This
expression is parsed and evaluated, and the value is displayed.

execute Eval r
= prompt "Expression >> " >>= \1 >
fromEMtoXM (fromPMtoEM (goodparse i parser) >>= \f ->
evaluateForm £ (snd (root r))) >>= \ov ->
output "Value: " >>
output (showval ov) >>
explore_loop r

The functions fromPMtoEM and fromEMtoXM are used to switch from the parser monad
to the enigine monad and from the engine monad to the explorer monad, respectively.
After the value of the expression has been displayed, the explorer loop is continued.

The three commands for navigation through the transition tree are the back, step and
until commands. At each moment during the navigation one of the evolving algebra
states in the transition tree of an evolving algebra is the current state. The navigation
commands operate by making a different state current. To make backtracking possible,
the history manager is used. When an evolving algebra state ceases to be the current
state, the subtree of which it is the root is stored on the stack. Hence, the items
that are stored on the history stack are not single evolving algebras, but transition
sub-trees. When the run analyzer needs to choose beteen several possible successor
states, he invokes the monadic random number generator.

Executution of the back command

When the user issues the back command, the run analyzer returns to the state that
was previously current. The execution of this command is defined as follows:

166 Chapter 10. EvADE: monadic implementation in Gofer

execute Back r

= recall >>= \predecessor ->
output "Return to previous state\n" >>
showState (root predecessor) >>

explore_loop predecessor

In the first line, the previous run analyzer state is recalled from the history stack.
After the new current evolving algebra state has been shown, the explorer loop is
continued.

Executution of the step command

The step command allows the user to descend a single step down the transition tree.
The execution of the step command is defined as follows:

execute Step r

= step_oner >>= \successor ->
showRuleName (fst (root successor)) >>
showState (root successor) >>

explore_loop successor

The auxiliary function step_one is used to select a successor of the current state. If
several successors exist, this auxiliary function consults the user to choose between
them or applies the random number generator. The rule which was applied to obtain
the successor is displayed, as well as the successor state itself. Finally, the explorer
loop is continued.

Executution of the until command

The until command prompts the user for a stop conditions, and subsequenlty runs the
evolving algebra until a state is encountered in which the stop condition is true. The
exectution of the until command is defined as follows:

execute Until r

= prompt "Stop condition >> " >>= \1 >
fromPMtoXM (goodparse i parser) >>= \f —>
archive r >>
run_until r £ >>= \successor->
showState (root successor) >>

explore_loop successor

The auxiliary function run_until is used to descend the transition graph. At forks
in the transition graphs, this function always invokes the random number generator.
When the a state in which the stop condition is true is encountered, this state is
displayed. Finally, the explorer loop continues.

10.6 Implementation of the top level components

The low level and intermediate level subcomponents of EvADE have now been ex-
plained. The top level components, the preprocessor, the compiler and the run ana-
lyzer, are built from these subcomponents. We will discuss these top level components
in turn.

10.6. Implementation of the top level components 167

10.6.1 Preprocessor

The task of the preprocessor is to convert an evolving algebra specification to an
intermediary representation, which can be read by the compiler and the run analyzer.
Evolving algebra specifications are assumed to reside in files with extension ea. The
preprocessor reads such a specification from file and feeds it to its first subcomponent:
the parser. The resulting parse tree is then given to the second subcomponent: the
generator. From this parse tree, the generator generates a Gofer representation of the
evolving algebra. Finally, this Gofer representation is written to a file with extension
gea. The definition of the preprocessor and an auxiliary function is as follows:

preprocess :: String —> Dialogue
preprocess fname readFile (fname++".ea") abort (\i —>
writeFile (fname++'".gea") (preprocess’ i) abort done)

preprocess’ :: String -> String
generateEA (unPM (parser :: PM EASpec) s)

preprocess’ s

The functions readFile and writeFile are predefined Dialogue functions for reading
and writing files in continuation style. The auxiliary function preprocess’ applies
the monadic parser to the input string which originates from the evolving algebra
specification file. As a result, a parse tree of an evolving algebra is obtained which
is encapsulated by the parser monads PM. Before the generator can be applied to the
parse tree, the monad must be stripped away. This 1s done by the function unPM,
which is defined as follows:

unPM :: PM a -> String -> a

unPM p s
= case unlift (goodparse s p) of
1 -> error "Parse failed"

(a:as) -> a
Recall that the parser monad was defined as follows:
type PM = ParserT List

The function unPM unlifts this monad to the underlying monad List. If the resulting
list 1s empty, a parse failure has occured. If the list is non-empty, the first of the
possible parse trees is selected as the result.

10.6.2 Compiler

The task of EvADE’s compiler is twofold. First, the compiler must invoke the engine
to lazily generate the transition graph of an evolving algebra. Secondly, the random
descender must be applied to this transition graph in order to select a final state
from this tree in a non-determinate fashion, and to evaluate the return expression in
this final state. The two subcomponents of the compiler, the engine and the random
descender, use different monads. The compiler switches from the engine monad EM to
the descender monad DM with the function fromEMtoDM, which was defined in section
10.5.2. To strip away the descender monad from the final result of the descender, the
following function is used:

168 Chapter 10. EvADE: monadic implementation in Gofer

unDM :: DM a -> a
unDM dm = 1let (a,_) = (unState dm) undefined
in a

Recall that the state monad and its auxiliary function are defined as follows:

data State s a = State (s —> (a,s))
unState (State x) = x

The function unDM operates by stripping away the tag from the state monad with
unState, and feeding the state transformer with an undefined initial state. The result
is a pair (a,s) of a value and a state. With pattern matching the value a is selected
and returned.

The compiler is defined in terms of the function fromEMtoDM and unDM as follows:

compile :: (EvaluationContext EM t,
CompilerContext t,
SubType EM r (Value t))
=> EAtr —>r
compile ea

= 1let retvalue = (fromEMtoDM (engine ea)) >>= \r ->
descend retexpr r
(EA _ _ _ _ retexpr) = ea

in unDM retvalue

In the first line of the function definition, the engine is applied to the evolving algebra,
yielding a transition tree r. In the second line, the random descender is called with
the return expression of the evolving algebra and its transition tree as arguments.
Finally, in the last line, the return value produced by the descender is freed from the
descender monad, and returned.

10.6.3 Run analyzer

The task of the run analyzer is twofold. Firstly, it must apply the engine to an
evolving algebra to obtain the transition graph induced by it. Secondly, it must apply
the interactive explorer to the transition tree. To switch from the engine monad to
the explorer monad, it uses the function fromEMtoXM. The run analyzer is defined as
follows:

analyze :: (EvaluationContext EM t,
ExploreContext t,
InteractiveIO (XM t))
=> EA t r -> Dialogue
analyze ea
= dialogue (handle (outputHandler,
(fromEMtoXM (engine ea) >>= \r ->
explore r)))

If any exceptions occur during the operation of the engine or the explorer, the output
handler is applied to handle them. The function dialogue is a member of the type
class InteractivelO. It transforms an I/O monad to Dialogue, which is Gofers type
for interactive 1/0.

10.7. Extendability of EVADE 169

10.7 Extendability of EVADE

In this section, we will evaluate the implementation of EvADE with respect to its
extendability. Especially the benefit of monads will be asessed. Also, we will sketch
possible future implementations of the features that we observed to be missing from
EVADE in section 7.3.

In the implementation of EVADE, we have not aimed for maximal performance, but
for perspicuity and extendability of the program. To obtain these properties, we have
applied several methods. The first of these methods is the commonly adopted device
of functional decomposition. In section 10.1 we explained the hierarchy of functional
components that constitute EvADE. Within the basic building blocks isolated in this
decomposition, even smaller elements can be distinguished. Secondly, we have made
ample use of Gofer’s various forms of polymorphism to introduce generality into the
elements of the implementation where this was appropriate. But our most important
means of achieving perspicuity and extendability in the implemention of EvADE, has
been the monadic programming method.

Using monads, we have been able to incorporate imperative programming features
into a functional program in a very elegant way. Among these features are interactive
I/0, an exception mechanism, and states for history management and random number
generation. Incorporation of these features into a non-monadic program lead to highly
cluttered code. For instance, to implement a state in a non-monadic program generally
implies adding an argument to each of its functions, through which the state can be
passed around. As a result, local portions of code can no longer be understood without
taking the entire program into consideration. Also, the imperative feature itself looses
its attractive simplicity. In the monadic implementation of EVADE, on the other hand,
imperative features have been incorporated without compromising the perspicuity of
the code or the imperative nature of the features.

The monadic programming method has effected extendability as well as perspicuity.
In fact, during its development, EVADE has already undergone several extensions to
take on its present form. In particular, both the history manager and the random
number generator have been added in a later stage. Both these extensions involved
two local changes. Firstly, the appropriate monad was enlarged by applying a monad
transformer to it. Secondly, the program was locally changed to capitalize on the added
monad features. In general, monadic programs can be extended without causing an
avalanche of adaptations throughout the existing code.

In section 7.3 we observed that integrity constraints and run-time statistics are
not supported by EVADE, but might be added to the program with reasonable little
programming effort, and without drastic changes to existing code. We can now sub-
stantiate this claim. Both these features can be implemented by the two-step process
of enlarging a monad and locally changing code. For both these extensions, the state
monad transformer can be used. In the first case a list of evolving algebra conditions,
is the appropriate state type. Watching the constraints can be realized by inserting
inspect and sentinel functions at appropriate places into the existing code. In the
second case, the approriate state type might be a series of various counters. Statistics
can be gathered by inserting invocations of the update function. Hence, these exten-
sions leave the existing program unaffected, and do not compromise the perspicuity
of the code.

EVADE’s monadic parser is also geared to extension. This is both due to the
monadic nature of the parser and to the overloading of the function parser by the
help of the class ParserClass. EVADE can be made to accept a new language construct

170 Chapter 10. EvADE: monadic implementation in Gofer

for evolving algebra specifications by making changes of two kinds. Firstly, a instance
of the parser class must be declared to specify a sub-parser for the new construct.
Secondly, the new parser must be merged into the existing parser. Due to the monadic
structure of the parser, this merging operation will in general require only a local
insertion of an invocation of parser. In section 7.3, three possible future extensions of
EVADE were mentioned, which demand new language constructs: macros, the remove
update, and variable declarations for massive parallelism. EVADE’s parser can be
extended to accept each of these language constructs without changing the existing
parser code.

The extension of EVADE with macros, the remove update and massive parallelism
requires changes not only to the parser, but also to the engine. We can not assess how
drastic these changes will need to be, without subjecting the relevant features to a
more thorough investigation. However, a few general observations can be made. The
componets of the engine, the executor and the evaluator, can be read as definitions
of the semantics of evolving algebra updates and terms. The proposed new features
are each intended to add to the semantics of evolving algebras, not to change it.
Hence, their implementation can be expected to require mostly additions to, and no
modifications of the existing evaluator and executor.

Appendix A

Monad Proofs

In chapter 9 the monadic programming method was presented. The definitions of
monads, monad extensions and monad transformers, given in that chapter, involved
a number of laws. Three groups of laws can be distinguished: monad laws, monad
extension laws and monad transformer laws. In this chapter, these laws are proven to
hold for a number of particular monads, monad extensions and monad transformers.

We will not give any proofs concerning the exception monad, the exception monad
transformer or the parser monad transformer. These monadic entities are very similar
to the maybe monad, the maybe monad transformer and the state monad transformer
respectively. As a consequence, the proof concerning them are almost identical. For
this reason, these proofs have been omitted from this appendix.

A.1 Proofs of the monad laws
Three monad laws were presented in section 9.1:

Left unit: (unit a) ‘bind‘ k = k a
Right unit: m ‘bind¢ unit = m
Associativity: m ‘bind¢ (\a -> (k a) ‘bind‘ (\b -> h b))
= (m ‘bind‘* (\a -> k a)) ‘bind‘ (\b -> h b)

We will prove these laws to hold for the identity monad, the maybe monad, the list
monad, and the state monad.

The Id monad

First monad law: left unit
(unit x) ‘bind‘ k

= (Id x) ‘bind‘ k def. unit

= kx def. bind
Second monad law: right unit
m ‘bind‘ unit

(Assume: m = Id x)
= (Id x) ‘bind‘ unit by assumption

171

172 Appendix A. Monad Proofs
= (Id x) ‘bind‘ Id def. unit
= Id x def. bind
= m by assumption
Third monad law: associativity
m ‘bind¢ (\a -> (k a) ‘bind‘ (\b -> h b))
(Assume: m = Id x)
= (Id x) ‘bind¢ (\a -> (k a) ‘bind‘ (\b -> h b)) by assumption
= (k x) ‘bind‘® (\b -> h b) def. bind
= ((I4 x) ‘bind‘ k) ‘bind‘ (\b -> h b) def. bind
= ((Id x) ‘bind* (\a -> k a)) ‘bind‘ (\b -> h b)
= (m ‘bind‘ (\a -> k a)) ‘bind‘ (\b -> h b) by assumption
The Maybe monad
First monad law: left unit
(unit x) ‘bind‘ k
= (Just x) ‘bind‘ k def. unit
= k x def. bind

Second monad law: right unit

m ‘bind‘ unit

(Assume: m =

(Assume: m =

(Just x)
(Just x)
Just x
m

Just x)

‘bind¢ unit
‘bind¢ Just

Nothing)

Nothing ‘bind‘ unit
Nothing ‘bind‘ Just

Nothing
m

Third monad law: associativity

m ‘bind*¢

by assumption

def. unit
def. bind

by assumption

by assumption

def. unit
def. bind

by assumption

(\a -> (k a) ‘bind‘ (\b -> h b))
(Assume: m = Just x)
(Just x) ‘bind‘ (\a —> (k a) ‘bind¢ (\b -> h b))
(k x) ‘bind‘ (\b -> h b)
((Just x) ‘bind‘ k) ‘bind‘ (\b -> h b)
((Just x) ‘bind¢ (\a > k a)) ‘bind‘ (\b —> h b)
(m ‘bind‘ (\a -> k a)) ‘bind‘ (\b -> h b)
(Assume: m = Nothing)

Nothing ‘bind¢ (\a -> (k a) ‘bind‘ (\b -> h b))

Nothing

Nothing ‘bind‘(\b -> h b)
(Nothing ‘bind‘ (\a -> k a)) ‘bind‘(\b -> h b)

(m ‘bind‘

(\a -> k a))

‘bind*¢

(\b -> h b)

def. bind
def. bind

by assumption

def. bind
def. bind
def. bind
by assumption

A.1. Proofs of the monad laws 173

The List monad

First monad law: left unit

(unit x) ‘bind‘ k

= [x] ‘bind‘ k def. unit
[Lb | a<-[x], bp <-k al] def bind
= [b | Db<-k x]
= kx

Second monad law: right unit

m ‘bind‘ unit
= [b | a<-m b<-unit a] def bind

= [b| a<-m b<- [a]] def. unit
= [b | b<-m]
= m

Third monad law: associativity

m ‘bind‘ (\a —> (k a) ‘bind‘ (\b -> h b))

= [b| a<-m b<- ((ka) ‘bind* (\b -> h b))] def. bind
= [bla<-mb<-[b]| a”<-ka, b<-ha’ll def. bind
= [b| a<-m a’<-ka, b<-h a’]

= [b|la<-[a | a<-m a’<-kal, b<-ha’l

= [b | a <- (m ‘bind®* (\a -> k a)), b <- h a’] def. bind
= (m ‘bind‘ (\a -> k a)) ‘bind‘ (\b -> h b) def. bind

The State monad

In order to condense the proofs for the state monad, we have abbreviated State and
unState by St and unSt in a number of places.

First monad law: left unit

(unit x) ‘bind‘ k

= State (\s -> (s,x)) ‘bind‘ k def. unit
= State (\s —> let (s’,x) = unState (State (\s -> (s,x))) s
in unState (k x) s’) def. bind
= State (\s —> let (s’,x) = (\s -> (s,x)) s
in unState (k x) s’) def. unState

= State (\s -> let (s’,x) = (s,x)
in unState (k x) s’)
= State (\s —-> unState (k x) s)
(Assume: k x = State (\s -> k’ (s,x)))
= State (\s —> unState (State (\s -> k’ (s,x))) s)
= State (\s —> k’ (s,x)) def. unState
= k x assumption

Second monad law: right unit

m ‘bind‘ unit
= State (\s —> let (s’,a) = unState m s

174 Appendix A. Monad Proofs

in unState (unit a) s’) def. bind
= State (\s —> let (s’,a) = unState m s
in unState (State (\s -> (s,a))) s’) def unit
= State (\s —> let (s’,a) = unState m s
in (\s -> (s,a)) s’) def. unState
= State (\s —> let (s’,a) = unState m s
in (s’,a))
= State (\s —-> unState m s)
(Assume: m = State m’)
= State (\s —-> unState (State m’) s)

= State (\s > m’ s) def. unState
= State m’
= m assumption

Third monad law: associativity

m ‘bind‘ (\a > (k a) ‘bind‘ (\b -> h b))
= St (\s -> let (s’,a) = unSt m s
in unSt ((k a) ‘bind‘ (\b -> h b)) s’) def. bind
St (\s > let (s’,a) = unSt m s
in unSt (St (\s -> let (s’’,a) = unSt (k a) s
in unSt (h a) s’’)) s’) def. unit
= St (\s -> let (s’,a) = unSt m s
in (\s -> let (s’’,a) = unSt (k a) s
in unSt (h a) s’’) s’) def. unSt
= St (\s -> let (s’,a) = unSt m s
in let (s’’,a) = unSt (k a) s’
in unSt (h a) s’?)
= St (\s -> let (8’’,a) = let (s’,a) = unSt m s
in unSt (k a) s’
in unSt (h a) s?’?)
= St (\s > let (s’’,a) = unSt (St (\s —> let (s’,a) = unSt m s
in unSt (k a) s’)) s

in unSt (h a) s’?) def. unSt
= St (\s -> let (s’’,a) = unSt (St (m ‘bind‘ (\a -> k a))) s

in unSt (h a) s’’) def. unit
= (m ‘bind‘ (\a -> k a)) ‘bind‘ (\b -> h b) def. bind

A.2 Proofs of the monad extension laws

In section 9.2, laws were presented for two monad extensions: the zero extension and
the plus extension. Hence, two groups of monad extension laws can be distinguished.
The zero laws are:

Left zero: zero ‘bind‘ k = zero

Right zero: m ‘bind¢ (\a -> zero) = zero
The plus laws are:
zero ||| m = m
m [l zero = m

(a = zero /\ b = zero) iff (a ||| b = =zero)

A.2. Proofs of the monad extension laws 175

The zero extension and the plus extension were only defined for the maybe monad
and the list monad. Hence, we need to prove the monad extension laws only for these
two monads.

The Maybe monad

First zero law: left zero

zero ‘bind‘ k

= Nothing ‘bind‘ k def. zero
= Nothing def. bind
= =zero def. zero

Second zero law: right zero

m ‘bind‘ \a -> zero
(Assume: m = Just x)

= (Just x) ‘bind‘ \a -> zero by assumption
= (\a —> zero) x def. bind
= zero

First plus law

zero ||| m
= Nothing ||| m def. zero
= m def. |1

Second plus law

m ||| zero

= m ||| Nothing def. zero
(Assume: m = Just x)

= (Just x) ||| Nothing

= Just x def. |11

= m by assumption
(Assume: m = Nothing)

= Nothing ||| Nothing

= DNothing def. |11

= m by assumption

Third plus law

The third plus law is a double implication:
(a = zero /\ b = zero) iff (a ||| b = zero)

We will prove the two implications separately. The first implication is proven as
follows:

a = zero /\ b = zero
= a lllb
= zero ||| zero
= zero The first plus law

176 Appendix A. Monad Proofs

The second implication can be proven by non-contradiction and analysis of cases.
Suppose the consequence a = zero /\b = zero is false. We can then distinguish
three cases: a /= zero /\b = zero or a = zero /\b /= zero or a /= zero /\b
/= zero. In all these cases we obtain contradictions as follows:

a lll b =zero /\ a /= zero /\ b = zero
= alll®b
= a ||| zero b = zero
= a second plus law
/= =zero a /= zero
alll b =zero /\ a = zero /\ b /= zero
= alllb
= zero ||| Db a = zero
= b first plus law
/= =zero b /= zero
alll b =zero /\ a /= zero /\ b /= zero
= alllb
(Assume: a = Just x)
= Just x ||| b
= Just x def. |||
= a assumption
/= zero a /= zero

Since a contradiction occurs in all cases, the consequence must be true when the
antecedent is. Hence, the second implication holds.

The List monad

First zero law: left zero

zero ‘bind‘ k

= [] ‘bind‘ k def. zero
= [b |l a<-[], b<-kal def bind
= [

= =zero def. zero

Second zero law: right zero

m ‘bind‘ \a -> zero

= m ‘bind‘ \a -> [] def. zero
= [b| a<-m b<- [] def. bind
= [

= =zero def. zero

First plus law

zero ||| m

= [0 Il m def. zero
[++ m
m

A.3. Proofs of the monad transformer laws 177

Second plus law

m ||| zero
= m ||| [def. zero
= m++ []
= m

Third plus law

We will prove the third law again by proving its two constituent implications
separately. The first implication is proven as follows:

a = zero /\ b = zero
= a lll b
= zero ||| zero
= zero The first plus law

The second implication can be proven by non-contradiction and analysis of cases.
Suppose the consequence a = zero /\b = zero is false. We can then distinguish
three cases: a /= zero /\b = zero or a = zero /\b /= zero or a /= zero /\b
/= zero. In all these cases we obtain contradictions as follows:

a lll b =zero /\ a /= zero /\ b = zero
= alllob
= a ||| zero b = zero
= a second plus law
/= =zero a /= zero
alll b ==zero /\ a = zero /\ b /= zero
= alllb
= zero ||| D a = zero
= b first plus law
/= =zero b /= zero
alll b =zero /\ a /= zero /\ b /= zero
=> alllb
(Assume: a = Just x)
= (x:xs) |l b
= (x:x8) ++ b def. |||
/= zero

Since a contradiction occurs in all cases, the consequence must be true when the
antecedent is. Hence, the second implication holds.

A.3 Proofs of the monad transformer laws

In section 9.3, the following monad laws were presented:

Umnit lift: 1ift (unit a) = unit a
Bind lift: 1ift (m ‘bind‘ \a -> k a)

= (lift m) ‘bind¢ (\a —> 1lift (k a))
Unlift: unlift (lift m) = m

178 Appendix A. Monad Proofs

We will present proofs for these laws for the maybe monad transformer and the state
monad transformer.

The MaybeT monad transformer

First monad transformer law

lift (unit a)
= MaybeM (unit a ‘bind‘ \a ->
unit (Just a))
MaybeM (unit (Just a))
= unit a

Second monad transformer law

(1ift m) ‘bind‘ (\a -> lift (k a))
= MaybeM (unMaybeM (1lift m) ‘bind‘¢ \maybea ->
case maybea of
Just a -> unMaybeM (lift (k a))
Nothing -> unit Nothing)
= MaybeM (unMaybeM (MaybeM (m ‘bind‘ \a ->
unit (Just a))) ‘bind‘ \maybea ->
case maybea of
Just a -> unMaybeM (lift (k a))
Nothing -> unit Nothing)
= MaybeM (m ‘bind‘ \a ->
unit (Just a) ‘bind‘ \maybea ->
case maybea of
Just a -> unMaybeM (lift (k a))
Nothing -> unit Nothing)
= MaybeM (m ‘bind‘ \a ->
case (Just a) of
Just a -> unMaybeM (lift (k a))
Nothing -> unit Nothing)
= MaybeM (m ‘bind‘ \a ->
unMaybeM (1ift (k a)))
= MaybeM (m ‘bind‘ \a ->
unMaybeM (MaybeM ((k a) ‘bind¢ \a ->
unit (Just a))))
= MaybeM (m ‘bind‘ \a ->
(k a) ‘bind‘ \a —->
unit (Just a))
= MaybeM ((m ‘bind‘ \a ->
k a) ‘bind¢ \a —>
unit (Just a))
lift (m ‘bind¢ \a -> k a)

Third monad transformer law

unlift (lift m)
= unMaybeM (1lift m) ‘bind‘ \maybea ->
case maybea of

A.3. Proofs of the monad transformer laws

Just a —> unit a
Nothing -> error "..."
unMaybeM (MaybeM (m ‘bind‘ \a ->

unit (Just a))) ‘bind‘¢ \maybea ->

case maybea of
Just a —> unit a
Nothing -> error "..."
m ‘bind¢ \a ->
unit (Just a) ‘bind‘ \maybea ->
case maybea of
Just a —-> unit a
Nothing -> error "..."
m ‘bind¢ \a ->
case (Just a) of
Just a —> unit a
Nothing -> error "..."
m ‘bind¢ \a —>
unit a
m

The StateT monad transformer

First monad transformer law

1lift (unit a)

StateM (\s -> unit a ‘bind‘ \x -> unit (s,x))
StateM (\s -> unit (s,a))
unit a

Second monad transformer law

lift (m ‘bind‘ \q{a} k a)

StateM (\g{s} (m ‘bind‘ \gq{a}
k a) ‘bind‘ \gq{x}
unit (s,x))

StateM (\gq{s} m ‘bind‘¢ (\q{a}
k a ‘bind‘ \g{x}
unit (s,x)))

StateM (\gq{s} m ‘bind‘ \q{x}
unit (s,x) ‘bind‘ \q{(s1,a)}
k a ‘bind‘ \g{x}
unit (s1,x))

StateM (\gq{s} m ‘bind‘ \q{x}

unit (s,x) ‘bind‘ \q{(si,a)}

unStateM (StateM (\gq{s} k a ‘bind‘ \q{x}
unit (s,x))) si1)

StateM (\q{s} m ‘bind‘ \q{x}
unit (s,x) ‘bind‘ \q{(s1,a)?}
unStateM (1ift (k a)) si)
StateM (\gq{s} m ‘bind‘ \q{x}
unit (s,x)) ‘bind‘ (\gq{al}

179

180 Appendix A. Monad Proofs

lift (k a))
= (lift m) ‘bind‘ (\g{a} lift (k a))

Third monad transformer law

unlift (1ift m)
= (unStateM (1lift m)) undefined ‘bind‘ \(s,a) ->
unit a
= (unStateM (StateM (\s -> m ‘bind‘ \a ->
unit (s,a)))) undefined ‘bind‘ \(s,a) ->
unit a
= (\s > m ‘bind‘ \a —>
unit (s,a)) undefined ‘bind‘ \(s,a) —>
unit a
= m ‘bind‘ \a —>
unit (undefined,a) ‘bind‘ \(s,a) —>
unit a
= m ‘bind‘ \a —>
unit a
m

Appendix B

Evolving algebra
specifications

The syntax of evolving algebra specifications accepted by EVADE, i1s given by the
following syntax description:

specification — MODULE name parameterlist signature

start program stopreturnexpr
parameterlist — [(parameter (, parameter)*)]
returnexpr — term : typeexpr
signature — staticsorts dynamicsorts staticfunctions dynamicfunctions
start — START updateset
program — (transitionrule)*
stop — STOP condition
parameter — name : typeexpr
staticsorts — SS (name ==> gofertype)*
dynamicsorts — DS (name)*
staticfunctions — SF (parameter ==> gofertype)*
dynamcfunctions — DF (parameter)*
transitionrule — TRANSITION name IF condition THEN updateset
updateset — (update)*
update — simpleupdate | newupdate
simpleupdate — updatableterm := term
newupdate — NEW updatableterm : name WITH updateset .
updatableterm — name [(term (, term)*)]
condition — term | (condition) NOT condition |

term termrelation term | DEFINED (term) | TRUE | FALSE |
condition conditionoperator condition

term — name [(term (, term)*)] | (term) | - term |
number | term termoperator term

termoperator — + | = | * | /

termrelation — = | /= | < | > | <= | >=

conditionoperator — /\ | \/
typeexpr — name | (name (, name)*) -> name

181

Bibliography

[Barg4]

[BPY5]

[BR94]

[Die95a]

[Die95b]

[FHSS]

[Gur9l]

[Gur95]

[HJe92]

H.P. Barendregt. The Lambda Calculus. Its Syntazr and Semantics. Studies in
Logic and the Foundations of Mathematics. North-Holland, revised edition,
1984.

Bernhard Beckert and Joachim Posegga. leanEA: A poor man’s evolving
algebra compiler. Interner Bericht 25/95, Universitat Karlsruhe, Fakultat
fur Informatik, 1995.

Egon Borger and Dean Rosenzweig. A mathematical definition of full prolog.
In Science of Computer Programming. (to appear), 1994.

Stephan Diehl. Transformations of evolving algebras. Technischer Bericht A
02/95, Universitat des Saarlandes, Computer Science Department, 1995.

Dag Diesen. Specifying algorithms using evolving algebras. implementation
of functional programming languages. Research report 199, Department of
Informatics, University of Oslo, March 1995.

Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-
Wesley, 1988.

Yuri Gurevich. Evolving algebras, a tutorial introduction. Bulletin of the Fu-
ropean Association for Theoretical Computer Science, 43:264 — 284, February
1991.

Yuri Gurevich. Evolving algebras 1993; lipari guide. In Egon Borger, editor,
Specification and Validation Methods. Oxford University Press, 1995.

P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the program-
ming language haskell, a non-strict purely functional language (version 1.2).

ACM SIGPLAN Notices, 27(5), May 1992.
Jim Huggins and Raghu Mani. The evolving algebra interpreter version 2.0.

James K. Huggins. An offline partial evaluator for evolving algebras. Tech-
nical Report CSE-TR-229-95, University of Michigan, EECS Department,
1995.

Mark P. Jones. An introduction to gofer. Available from
http://www.cs.yale.edu/.

Angelica Maria Kappel. Executable specifications based on dynamic alge-
bras. In A. Voronkov, editor, Logic Programming and Automated Reasoning,

volume 689 of LNAI. Springer, 1993.

182

BIBLIOGRAPHY 183

[LHJI95]

[PHY4]

[Ton93]

[Wad90]

[Wad92]

[Wat90]

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modu-
lar interpreters. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, January
1995.

Arnd Poetzsch-Heffter. Deriving partial correctness logics from evolving al-
gebras. In B. Pehrson and I. Simon, editors, IFIP 13th World Computer
Congress, volume Volume I: Technology/Foundations, pages 434 — 439. El-
sevier, 1994.

Hans Tonino. A formalization of many-sorted evolving algebras. Report 93-
115, Delft University of Technology, Faculty of Technical Mathematics and
Informatics, 1993.

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM
Conference on Lisp and FPunctional Programmaing, June 1990.

Philip Wadler. The essence of functional programming. In Conference Record
of the Nineteenth Annual ACM Symposium on Principles of Programming
Languages, pages 1-14, January 1992.

David A. Watt. Programming Language Concepts and Paradigms. Interna-
tional Series in Computer Science. Prentice Hall, 1990.

